MicroRNA Prioritization based on Target Profile Similarities

Péter Marx, Bence Bolgár, András Gézsi, Attila Gulyás-Kovács, Péter Antal

Abstract

microRNAs form a complex regulatory network with thousands of target genes. This network is known to suffer specific, but largely elusive, genetic perturbations in various types of disease. Accurate prioritization of microRNAs for each disease type would elucidate those perturbations and so facilitate therapeutic and diagnostic design. The multiple target profiles of microRNAs stemming from various experimental and in silico methods allow the definition of wide range of similarities over microRNAs, but the combined use of these of heterogeneous similarities was not utilized in the gene prioritization approach. Using microRNAs as bases, prioritization with a disease-specific query set of microRNAs is straightforward once a microRNAmicroRNA similarity matrices have been derived. Here we demonstrate the application of a one-class version of the multiple kernel learning framework in order to fuse heterogeneous characteristics of microRNAs. We evaluate the method with breast cancer-specific queries, illustrate its technological aspects, and validate our results not only by standard leave-one-out cross validation, but also with a prospective evaluation.

References

  1. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L., De Moor, B., Marynen, P., Hassan, B., Carmeliet, P., and Moreau, Y. (2006). Gene prioritization through genomic data fusion. Nature Biotechnology, 24(5):537-544.
  2. Arany, A., Bolgár, B., Balogh, B., Antal, P., and Mátyus, P. (2013). Multi-aspect candidates for repositioning: Data fusion methods using heterogeneous information sources. Current Medicinal Chemistry, 20(1):95-107.
  3. Bolgár, B., Arany, A., Temesi, G., Balogh, B., Antal, P., and Mátyus, P. (2013). Drug repositioning for treatment of movement disorders: from serendipity to rational discovery strategies. CURRENT TOPICS IN MEDICINAL CHEMISTRY, 13(18):2337-63.
  4. Bornigen, D., Tranchevent, L., Bonachela-Capdevila, F., Devriendt, K., De Moor, B., De Causmaecker, P., and Moreau, Y. (2012). An unbiased evaluation of gene prioritization tools. Bioinformatics, 28(23):3081- 3088.
  5. Burbidge, R., Trotter, M., Buxton, B., and Holden, S. (2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. (Oxford, U. K.), 26(1):5-14.
  6. Chen, K. and Rajewsky, N. (2007). The evolution of gene regulation by transcription factors and micrornas. Nat Rev Genet, 8(2):93-103.
  7. De Bie, T., Tranchevent, L.-C., Van Oeffelen, L. M., and Moreau, Y. (2007). Kernel-based data fusion for gene prioritization. Bioinformatics, 23(13):i125-i132.
  8. Eckert, H. and Bajorath, J. (2007). Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discovery Today, 12(5- 6):225-233.
  9. Ficarra, E. et al. (2012). One decade of development and evolution of microrna target prediction algorithms. Genomics, proteomics & bioinformatics.
  10. Freudenberg, J. and Propping, P. (2002). A similaritybased method for genome-wide prediction of diseaserelevant human genes. Bioinformatics, 18:S110- S115.
  11. Ginn, C., Turner, D., Willett, P., Ferguson, A., and Heritage, T. (1997). Similarity searching in files of threedimensional chemical structures: Evaluation of the eva descriptor and combination of rankings using data fusion. J. Chem. Inf. Model., 37(1):23-37.
  12. Ginn, C., Willett, P., and Bradshaw, J. (2000). Combination of molecular similarity measures using data fusion. Perspect. Drug Discovery Des., 20(1):1-16.
  13. Hsu, S.-D., Lin, F.-M., Wu, W.-Y., Liang, C., Huang, W.- C., Chan, W.-L., Tsai, W.-T., Chen, G.-Z., Lee, C.-J., Chiu, C.-M., et al. (2011). mirtarbase: a database curates experimentally validated microrna-target interactions. Nucleic acids research, 39(suppl 1):D163- D169.
  14. Iacucci, E., Tranchevent, L., Popovic, D., Pavlopoulos, G., De Moor, B., Schneider, R., and Moreau, Y. (2012). Reliance: a machine learning and literature-based prioritization of receptor-ligand pairings. Bioinformatics, 28(18):I569-I574.
  15. Jacobsen, A., Silber, J., Harinath, G., Huse, J. T., Schultz, N., and Sander, C. (2013). Analysis of microrna-target interactions across diverse cancer types. Nature structural & molecular biology.
  16. Johnson, M. and Maggiori, G. (1990). Concepts and applications of molecular similarity. Wiley.
  17. Kim, K., Chadalapaka, G., Lee, S., Yamada, D., SastreGarau, X., Defossez, P.-A., Park, Y.-Y., Lee, J.-S., and Safe, S. (2011). Identification of oncogenic microrna17-92/zbtb4/specificity protein axis in breast cancer. Oncogene, 31(8):1034-1044.
  18. Kohler, S., Bauer, S., Horn, D., and Robinson, P. (2008). Walking the interactome for prioritization of candidate disease genes. American Journal of Human Genetics, 82(4):949-958.
  19. Lanckriet, G., De Bie, T., Cristianini, N., Jordan, M., and Noble, W. (2004). A statistical framework for genomic data fusion. Bioinformatics, 20(16):2626- 2635.
  20. Lee, I., Blom, U., Wang, P., Shim, J., and Marcotte, E. (2011). Prioritizing candidate disease genes by network-based boosting of genome-wide association data. Genome Research, 21(7):1109-1121.
  21. Li, X., Wang, Q., Zheng, Y., Lv, S., Ning, S., Sun, J., Huang, T., Zheng, Q., Ren, H., Xu, J., Wang, X., and Li, Y. (2012). Prioritizing human cancer micrornas based on genes? functional consistency between microrna and cancer. Nucleic Acids Research, 40(16):7653-7665.
  22. Liekens, A., De Knijf, J., Daelemans, W., Goethals, B., De Rijk, P., and Del-Favero, J. (2011). Biograph: unsupervised biomedical knowledge discovery via automated hypothesis generation. Genome Biology, 12(6).
  23. Moreau, Y. and Tranchevent, L. (2012). Computational tools for prioritizing candidate genes: boosting disease gene discovery. Nature Reviews Genetics, 13(8):523-536.
  24. Moya, M. and Hush, D. (1996). Network constraints and multi-objective optimization for one-class classification. Neural Networks, 9(3):463-474.
  25. Nilsen, T. W. (2007). Mechanisms of microrna-mediated gene regulation in animal cells. TRENDS in Genetics, 23(5):243-249.
  26. Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y. (2008). Simplemkl. J. Mach. Learn. Res., 9:2491- 2521.
  27. Samantarrai, D., Dash, S., Chhetri, B., and Mallick, B. (2013). Genomic and epigenomic cross-talks in the regulatory landscape of mirnas in breast cancer. Molecular Cancer Research, 11(4):315-328.
  28. Schlkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Comput., 13(7):1443-1471.
  29. Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443-1471.
  30. Sun, Z., Ampornpunt, N., Varma, M., and Viswanathan, S. (2010). Multiple kernel learning and the smo algorithm. In Advances in neural information processing systems, pages 2361-2369.
  31. Warmuth, M., Liao, J., Ratsch, G., Mathieson, M., Putta, S., and Lemmen, C. (2003). Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Model., 43(2):667-673.
  32. Xu, J., Li, C.-X., Lv, J.-Y., Li, Y.-S., Xiao, Y., Shao, T.-T., Huo, X., Li, X., Zou, Y., Han, Q.-L., Li, X., Wang, L.-H., and Ren, H. (2011). Prioritizing candidate disease mirnas by topological features in the mirna target?dysregulated network: Case study of prostate cancer. Molecular Cancer Therapeutics, 10:1857-1866.
  33. Yu, S., Falck, T., Daemen, A., Tranchevent, L.-C., Suykens, J. A., De Moor, B., and Moreau, Y. (2010). L2-norm multiple kernel learning and its application to biomedical data fusion. BMC bioinformatics, 11(1):309.
Download


Paper Citation


in Harvard Style

Marx P., Bolgár B., Gézsi A., Gulyás-Kovács A. and Antal P. (2014). MicroRNA Prioritization based on Target Profile Similarities . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 278-285. DOI: 10.5220/0004925502780285


in Bibtex Style

@conference{bioinformatics14,
author={Péter Marx and Bence Bolgár and András Gézsi and Attila Gulyás-Kovács and Péter Antal},
title={MicroRNA Prioritization based on Target Profile Similarities},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={278-285},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004925502780285},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - MicroRNA Prioritization based on Target Profile Similarities
SN - 978-989-758-012-3
AU - Marx P.
AU - Bolgár B.
AU - Gézsi A.
AU - Gulyás-Kovács A.
AU - Antal P.
PY - 2014
SP - 278
EP - 285
DO - 10.5220/0004925502780285