Diagnostics of Coronary Stenoses - Analysis of Arterial Blood Pressure Signals and Mathematical Modeling

Natalya Kizilova

Abstract

Severity of the coronary stenoses and necessity of the percutaneous coronary intervention is usually estimated basing on analysis of the pressure and flow signals measured in vivo by a pressure gauge at certain distances before and after the stenosis. In the paper the differences in the pressure gradients at different stenosis severity are shown and discussed. A method of decomposition of the measured biosignals into the mean and oscillatory components is proposed. A mathematical model of the steady and pulsatile flow through the viscoelastic blood vessel in the presence of the rigid guiding wire is developed for biomechanical interpretation of the measured coronary blood pressure and flow signals. A novel approach for estimation the stenotic severity basing on the measured and computed data is proposed.

References

  1. Barclay, K. D., Klassen, G. A., Young, Ch., 2000. A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux. Microcirculation, 7(5): 335-346.
  2. Canic S., Hartley C. J., Rosenstrauch D., Tambaca J., Guidoboni G., Mikelic A., 2006. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Ann. Biomed. Engin., 34(4):575-592.
  3. Caussin, Ch., Larchez, Ch., Ghostine, S., et al, 2006. Comparison of Coronary Minimal Lumen Area Quantification by Sixty-Four-Slice Computed Tomography Versus Intravascular Ultrasound for Intermediate Stenosis. Am. J. Cardiol., 98:871-876.
  4. Cox R. H., (1968). Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys. J., 8:691-709.
  5. Dodge, J. T., Brown, B. G., Bolson, E. L., Dodge, H. T., 1992. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 86:232-246.
  6. Fihn, S. D., Gardin, J. M., Abrams, J., et al, 2012. ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. Circulation, 126:354- 471.
  7. Hinds, M. T., Park, Y. J., Jones, S. A., Giddens, D. P., Alevriadou, B. R., 2001. Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J. Biomech. 34:95-103.
  8. Kizilova, N., 2013. Blood flow in arteries: regular and chaotic dynamics. In: Dynamical systems. Applications. /Awrejcewicz, J., Kazmierczak, M., Olejnik, P., Mrozowski, K. (eds). Lodz Politechnical University Press, 69-80.
  9. Layek, G. C., Mukhopadhyay, S., Gorla, R.S.R., 2009. Unsteady viscous flow with variable viscosity in a vascular tube with an overlapping constriction. Intern. J. Engin. Sci., 47: 649-659.
  10. Li, Y., Zhanga, J., Lub, Z., Panb, J., 2012. Discrepant findings of computed tomography quantification of minimal lumen area of coronary artery stenosis: Correlation with intravascular ultrasound. Europ. J. Radiol., 81:3270-3275.
  11. Lighthill, J., 2001. Waves in Fluids. Cambridge Univ. Press.
  12. Milnor W. R., (1989). Hemodynamics. Baltimore: Williams &Wilkins.
  13. Nichols, W., O'Rourke, M., Vlachopoulos, Ch. (eds.) McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles. 2011. 6th Edition.
  14. Pijls, N. H., 2003. Is it time to measure fractional flow reserve in all patients? J. Am. Coll. Cardiol., 41:1122- 1124.
  15. Qi X., Lv H., Zhou F., et al, 2013. A novel noninvasive method for measuring fractional flow reserve through three-dimensional modeling, Arch. Med. Sci., 9(3):581-583.
  16. Rajani, R., Wang, Y., Uss, A., et al, 2013. Virtual fractional flow reserve by coronary computed tomography - hope or hype? EuroIntervention. 9(2):277-284.
  17. Silber, S., Albertsson, P., Aviles, F.F., et al., 2005. Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur. Heart J., 26:804-847.
  18. Taylor, C. A., Fonte, T. A., Min, J. K., 2013. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J. Am. Coll. Cardiol., 61: 2233-2241.
  19. Tonino, P. A. L., Fearon, W. F., De Bruyne, B. et al, 2010. Angiographic Versus Functional Severity of Coronary Artery Stenoses in the FAME Study Fractional Flow Reserve Versus Angiography in Multivessel Evaluation. J. Am. Coll. Cardiol., 55:2816-2821.
  20. Trzeciakowski, J., Chilian, W., 2008. Chaotic behavior of the coronary circulation. Med.& Biol. Eng.& Comp., 46(5): 433-442.
  21. Vlodaver Z., Wilson R.F., Garry D. J., 2012. Coronary Heart Disease: Clinical, Pathological, Imaging, and Molecular Profiles. Springer.
  22. Xiong G., Choi G., Taylor Ch. A., 2012. Virtual interventions for image-based blood flow computation. Computer-Aided Design, 44:3-14.
Download


Paper Citation


in Harvard Style

Kizilova N. (2014). Diagnostics of Coronary Stenoses - Analysis of Arterial Blood Pressure Signals and Mathematical Modeling . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 76-83. DOI: 10.5220/0004929500760083


in Bibtex Style

@conference{biosignals14,
author={Natalya Kizilova},
title={Diagnostics of Coronary Stenoses - Analysis of Arterial Blood Pressure Signals and Mathematical Modeling},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={76-83},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004929500760083},
isbn={978-989-758-011-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Diagnostics of Coronary Stenoses - Analysis of Arterial Blood Pressure Signals and Mathematical Modeling
SN - 978-989-758-011-6
AU - Kizilova N.
PY - 2014
SP - 76
EP - 83
DO - 10.5220/0004929500760083