A Hybrid Strategy for Integrating Sensor Information

Koly Guilavogui, Laila Kjiri, Mounia Fredj


The combination of sensor networks with databases has led to a large amount of real-time data to be managed, and this trend will still increase in the next coming years. With this data explosion, current integration systems have to adapt. One of the main challenges is the integration of information coming from autonomously deployed sensor networks, with different geographical scales, but also with the combination of such information with other sources, such as legacy systems. Two main approaches for integrating sensor information are generally used: virtual and warehousing approaches. In the virtual approach, sensor devices are considered as data sources and data are managed locally. In contrast, in the warehousing approach, sensor data are stored in a central database and queries are performed on it. However, these solutions turn out to be difficult to exploit in the current technology landscape. This paper focuses on the issue of integrating multiple heterogeneous sensor information and puts forward a framework for decision making process.


  1. Aggarwal, C. C., Ashish, N., Sheth, A. 2013. The internet of things: a survey from the data-centric perspective, in: Managing and Mining Sensor Data. Springer, pp. 383-428.
  2. Ahmed, A., Ploennigs, J., Menzel, K., Cahill, B., 2010. Multi-dimensional building performance data management for continuous commissioning. Advanced Engineering Informatics 24(4), 466-475.
  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. 2002. A survey on sensor networks. Communications magazine, IEEE, 40(8), pp. 102-114.
  4. Casola, V., Gaglione, A., Mazzeo, A. 2009. A reference architecture for sensor networks integration and management, in: GeoSensor Networks. Springer, pp. 158-168.
  5. Codd, E. F., Codd, S. B., and Salley, C. T., 1993. Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Codd and Date, 32.
  6. Convey, C., Karpenko, O., and Tatbul, N., 2001. Data integration services. http://www.cs.brown. edu/people/atbul/cs227/chapter.pdf.
  7. Da Costa, R., and Cugnasca, C. E. 2010. Use of data warehouse to manage data from wireless sensors networks that monitor pollinators. In 11th International Conference on Mobile Data Management (MDM), IEEE Computer Society, Missouri, USA. pp.402-406.
  8. Favre, C., Bentayeb, F., Boussaid, O., Darmont, J., Gavin, G., Harbi, N., ... and Loudcher, S., 2013. Les entrepôts de données pour les nuls... ou pas!. 2ème Atelier Aide à la Décision à tous les Etages (EGC/AIDE 13), Toulouse, France.
  9. Gökçe, H. U., Gökçe, K. U., 2014. Multi-dimensional energy monitoring, analysis and optimization system for energy efficient building operations. Sustainable Cities and Society, 10, pp. 161-173.
  10. Grosky, W. I., Kansal, A., Nath, S., Liu, J., Zhao, F., 2007. Senseweb: An infrastructure for shared sensing. Multimedia, IEEE, 14, pp. 8-13.
  11. Gupta, A., and Mumick, I. S., 1995. Maintenance of materialized views: Problems, techniques, and applications. IEEE Data Eng. Bull., 18(2), pp. 3-18.
  12. Halevy, A.Y. 2001. Answering queries using views: A survey. The VLDB Journal, 10(4), pp. 270-294.
  13. Huang, V., Javed, M.K., 2008. Semantic sensor information description and processing, in: Sensor Technologies and Applications. SENSORCOMM'08. pp. 456-461.
  14. Ibrahim, I. K., Kronsteiner, R., and Kotsis, G., 2005. A semantic solution for data integration in mixed sensor networks. Computer Communications, 28(13), pp. 1564-1574.
  15. Inmon, W. H. 1996. Building the data warehouse. Wiley Publishing, Inc.
  16. Kimball, R., and Caserta, J. 2004. The data warehouse ETL toolkit: practical techniques for extracting, cleaning, conforming, and delivering data. Wiley Publishing, Inc.
  17. Konstantinou, N., 2012. Converting raw sensor data to semantic web triples: a survey of implementation options. Journal of Sensors, Wireless Communications and Control 2.1: 44-52.
  18. Lenzerini, M., 2002. Data integration: a theoretical perspective. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, ACM, pp. 233-246.
  19. Li, Y., Wang, L., Ji, L., Liao, C., 2013. A data warehouse architecture supporting energy management of intelligent electricity system, in: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering. Atlantis Press, Paris, France.
  20. Mathieu, J. 2011. Intégration de données temps-réel issues de capteurs dans un entrepôt de données géodécisionnels. Thesis (MSc), Université de Laval. Canada.
  21. Roantree, M., 2009. A hybrid storage model for web information systems, in: Proceedings of the 6th International Workshop on Web Information Systems Modeling. Amsterdam, The Netherlands.
  22. Shah, N., Tsai, C. F., Marinov, M., Cooper, J., Vitliemov, P., and Chao, K. M., 2009. Ontological on-line analytical processing for integrating energy sensor data. IETE Technical Review, 26(5), pp. 375.
  23. Shokoh, K. 2010. A hybrid approach to data integration. Thesis (PhD). Université Joseph Fourier-Grenoble I. France.
  24. Stocks, K. I., Condit, C., Qian, X., Brewin, P. E., and Gupta, A., 2009. Bringing together an ocean of information: an extensible data integration framework for biological oceanography. Deep Sea Research Part II: Topical Studies in Oceanography, 56(19), pp. 1804-1811.
  25. Widom, J. 1995. Research problems in data warehousing. In Proceedings of the fourth international conference on Information and knowledge management, USA, ACM, pp. 25-30.
  26. Wiederhold, G. 1992. Mediators in the architecture of future information systems, IEEE Computer, 25(3), pp. 38-49.
  27. Xu, L., and Embley, D. W., 2004. Combining the best of Global-as-View and Local-as-View for data integration. In ISTA, 48, pp. 123-136.
  28. Yao, Y., and Gehrke, J., 2002. The cougar approach to innetwork query processing in sensor networks. ACM Sigmod Record, 31(3), pp. 9-18.
  29. Zhou, G., Hull, R., King, R., and Franchitti, J. C. 1995. Data integration and warehousing using H2O. IEEE Data Eng. Bull., 18(2), pp. 29-40.
  30. Ziegler, K., and Dittrich, R. 2004. Three decades of Data Integration - All Problems solved? Building the Information Society, Springer.

Paper Citation

in Harvard Style

Guilavogui K., Kjiri L. and Fredj M. (2014). A Hybrid Strategy for Integrating Sensor Information . In Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-027-7, pages 281-286. DOI: 10.5220/0004936302810286

in Bibtex Style

author={Koly Guilavogui and Laila Kjiri and Mounia Fredj},
title={A Hybrid Strategy for Integrating Sensor Information},
booktitle={Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - A Hybrid Strategy for Integrating Sensor Information
SN - 978-989-758-027-7
AU - Guilavogui K.
AU - Kjiri L.
AU - Fredj M.
PY - 2014
SP - 281
EP - 286
DO - 10.5220/0004936302810286