Multi-cloud and Multi-data Stores - The Challenges Behind Heterogeneous Data Models

Marcos Aurélio Almeida da Silva, Andrey Sadovykh

Abstract

The support to cloud enabled databases varies from one cloud provider to another. Developers face the task of supporting applications living in different clouds, and therefore of supporting different database management systems. To them, the challenge lies in understanding the differences in expressivity between different data stores and their impact on the application. The advent of the NoSQL movement increased the complexity of this task by leveraging the creation of a large number of cloud enabled database management systems employing slightly different data models. In this paper, we will present a model the will allow us to compare the differences in expressivity of the features supported by different databases and consider the impact of these features to different concrete deployment scenarios in multiple clouds. This model is based on the underlying data models adopted by the most used cloud database management systems. It has been developed on the FP7 JUNIPER project and will be the basis of our approach for dealing with these issues.

References

  1. Acid house. (n.d.). Retrieved november 8, 2013, from https://github.com/eiichiro/acidhouse
  2. Cattell, R. (2010). Scalable SQL and NoSQL data stores. ACM SIGMOD Record , 12-27.
  3. DataNucleus Access Platform. (n.d.). Retrieved November 8, 2013, from http:// www.datanucleus.org/
  4. DB-UML Database Modeling Tool. (n.d.). Retrieved November 8, 2013, from http://argouml-db.tigris.org/
  5. DeMichiel, L. (2009). JSR 131:Java Persistence API, Version 2.0. Sun Microsystems.
  6. eobjects.org MetaModel. (n.d.). Retrieved November 8, 2013, from http://metamodel.eobjects.org/ index.html
  7. F., G., D., L., M., S. Y., D., A., & E., D. N. (2013). An Approach for the Development of Portable Applications on PaaS Clouds. Proceedings of the 3rd International Conference on Cloud Computing and Service Science (CLOSER 2013), (pp. 591-601).
  8. Federated Unfied Query Language, FunQL. (n.d.). Retrieved November 8, 2013, from http://funql.org/
  9. Han, J., Haihong, E., Le, G., & Du, J. (2011). Survey on NoSQL database . Pervasive Computing and Applications (ICPCA), 2011 6th International Conference on , (pp. 363 - 366 ). Port Elizabeth .
  10. Hecht, R., & Jablonski, S. (2011). NoSQL evaluation: A use case oriented survey . Cloud and Service Computing (CSC), 2011 International Conference on , (pp. 336-341). Hong Kong .
  11. Hibernate Object/Grid Mapper. (n.d.). Retrieved November 8, 2013, from http://www.hibernate.org/ subprojects/ogm.html
  12. Hibernate: Relational Persistence for Java and .NET. (n.d.). Retrieved November 8, 2013, from http://hibernate.org
  13. JBoss Teiid. (n.d.). Retrieved November 8, 2013, from http://www.jboss.org/teiid/
  14. Khajeh-Hosseini, A., Greenwood, D., & Sommerville, I. (2010). Cloud Migration: A Case Study of Migrating an Enterprise IT System to IaaS . Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference on , (pp. 450 - 457 ). Miami, FL .
  15. Kundera. (n.d.). Retrieved November 8, 2013, from https://github.com/impetus-opensource/Kundera
  16. Liu, T., Katsuno, Y., Sun, K., & Li, Y. (2011). Multi Cloud Management for unified cloud services across cloud sites . IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), (pp. 164- 169). Beijing.
  17. Moniruzzaman, A. B., & Hossain, S. A. (2013). NoSQL Database: New Era of Databases for Big data Analytics - Classification, Characteristics and Comparison. International Journal of Database Theory and Application, 1-14.
  18. Morphia. (n.d.). Retrieved November 8, 2013, from http://code.google.com/p/morphia/
  19. Pentaho. (n.d.). Retrieved November 8, 2013, from http://www.pentaho.com/
  20. PlayORM. (n.d.). Retrieved November 8, 2013, from https://github.com/deanhiller/playorm
  21. Rackspace. (2013, February 13). 88 per cent of cloud users point to cost savings, according to Rackspace Survey. Retrieved June 2013, from http:// blog.rackspace.co.uk/in-the-industry/88-per-cent-ofcloud-users-point-to-cost-savings-according-torackspace-survey/
  22. Rimal, B., Sch. of Bus. IT, K. U., Choi, E., & Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing Systems. Fifth International Joint Conference on INC, IMS and IDC, 2009. NCM 7809., (pp. 44-51). Seoul.
  23. Singh, Y., Kandah, F., & Zhang, W. (2011). A secured cost-effective multi-cloud storage in cloud computing . IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (pp. 619-624). Shanghai.
  24. SOFTEAM; University of York. (2013). D5.1 - Foundations for MDE of Big Data Oriented Real-Time Systems.
  25. Spring Data. (n.d.). Retrieved November 8, 2013, from http://www.springsource.org/spring-data
  26. Toad for Cloud. (n.d.). Retrieved November 8, 2013, from http://toadforcloud.com/index.jspa
  27. UnQL Specification. (n.d.). Retrieved November 8, 2013, from http://www.unqlspec.org
  28. Yahoo Pipes. (n.d.). Retrieved November 8, 2013, from http://pipes.yahoo.com/pipes/
Download


Paper Citation


in Harvard Style

Aurélio Almeida da Silva M. and Sadovykh A. (2014). Multi-cloud and Multi-data Stores - The Challenges Behind Heterogeneous Data Models . In Proceedings of the 4th International Conference on Cloud Computing and Services Science - Volume 1: MultiCloud, (CLOSER 2014) ISBN 978-989-758-019-2, pages 703-713. DOI: 10.5220/0004974607030713


in Bibtex Style

@conference{multicloud14,
author={Marcos Aurélio Almeida da Silva and Andrey Sadovykh},
title={Multi-cloud and Multi-data Stores - The Challenges Behind Heterogeneous Data Models},
booktitle={Proceedings of the 4th International Conference on Cloud Computing and Services Science - Volume 1: MultiCloud, (CLOSER 2014)},
year={2014},
pages={703-713},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004974607030713},
isbn={978-989-758-019-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Cloud Computing and Services Science - Volume 1: MultiCloud, (CLOSER 2014)
TI - Multi-cloud and Multi-data Stores - The Challenges Behind Heterogeneous Data Models
SN - 978-989-758-019-2
AU - Aurélio Almeida da Silva M.
AU - Sadovykh A.
PY - 2014
SP - 703
EP - 713
DO - 10.5220/0004974607030713