A Heuristic Framework for Path Planning the Largest Volume Object from a Start to Goal Configuration

Evan Shellshear, Robert Bohlin

Abstract

In this article we present a heuristic algorithm to compute the largest volume of an object in three dimensions that can move collision-free from a start configuration to a goal configuration through a virtual environment. The results presented here provide industrial designers with a framework to reduce the number of design iterations when designing parts to be placed in tight spaces.

References

  1. Björkenstam, S., Segeborn, J., Carlson, J. S., and Bohlin, R. (2012). Assembly verification and geometry design by distance field based shrinking. In 4th CIRP Conference on Assembly Technology and Systems-CATS 2012, University of Michigan, Ann Arbor, USA on May 21-23, 2012.
  2. Bohlin, R. and Kavraki, L. (2000). Path planning using lazy prm. In IEEE International Conference on Robotics and Automation, volume 1, pages 521-528. IEEE.
  3. Carlson, J. S., Spensieri, D., S öderberg, R., Bohlin, R., and Lindkvist, L. (2013). Non-nominal path planning for robust robotic assembly. Journal of manufacturing systems, 32(3):429-435.
  4. Cohen-Or, D. and Kaufman, A. (1995). Fundamentals of surface voxelization. Graphical models and image processing, 57(6):453-461.
  5. COIN-OR (2014). COmputational INfrastructure for Operations Research. http://www.coin-or.org/.
  6. Folkestad, J. E. and Johnson, R. L. (2002). Integrated rapid prototyping and rapid tooling (irprt). Integrated Manufacturing Systems, 13(2):97-103.
  7. Geraerts, R. and Overmars, M. H. (2005). On improving the clearance for robots in high-dimensional configuration spaces. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, pages 679-684. IEEE.
  8. Geraerts, R. and Overmars, M. H. (2007). The corridor map method: Real-time high-quality path planning. In Robotics and Automation, 2007 IEEE International Conference on, pages 1023-1028. IEEE.
  9. Hermansson, T., Bohlin, R., Carlson, J. S., and Söderberg, R. (2012). Automatic path planning for wiring harness installations (wt). In 4th CIRP Conference on Assembly Technology and Systems-CATS 2012, University of Michigan, Ann Arbor, USA on May 21-23, 2012.
  10. Ilies, H. T. and Shapiro, V. (1999). The dual of sweep. Computer-Aided Design, 31(3):185-201.
  11. Kim, J., Pearce, R. A., and Amato, N. M. (2003). Extracting optimal paths from roadmaps for motion planning. In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on, volume 2, pages 2424-2429. IEEE.
  12. Larsen, E., Gottschalk, S., Lin, M. C., and Manocha, D. (1999). Fast proximity queries with swept sphere volumes. Technical report, Technical Report TR99-018, Department of Computer Science, University of North Carolina.
  13. LaValle, S. and Kuffner Jr, J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5):378-400.
  14. Nüchter, A., Elseberg, J., Schneider, P., and Paulus, D. (2010). Linearization of rotations for globally consistent n-scan matching. In IEEE International Conference on Robotics and Automation (ICRA), page 7.
  15. Shellshear, E., Tafuri, S., and Carlson, J. (2014). A multithreaded algorithm for computing the largest noncolliding moving geometry. Computer-Aided Design, 49(0):1 - 7.
  16. Spensieri, D., Bohlin, R., and Carlson, J. S. (2013). Coordination of robot paths for cycle time minimization. In CASE, pages 522-527.
  17. Spensieri, D., Carlson, J. S., Bohlin, R., and Söderberg, R. (2008). Integrating assembly design, sequence optimization, and advanced path planning. ASME Conference Proceedings, (43253):73-81.
  18. Vanderhyde, J. and Szymczak, A. (2008). Topological simplification of isosurfaces in volumetric data using octrees. Graphical Models, 70(1):16-31.
  19. Zachmann, G. et al. (2000). Virtual Reality in Assembly Simulation: Collision Detection, Simulation Algorithms, and Interaction Techniques. Fraunhofer-IRBVerlag.
  20. Zheng, L., Cho, Y.-K., Liu, X., and Wang, W. (2011). Cvtbased 2d motion planning with maximal clearance. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 2281-2287. IEEE.
Download


Paper Citation


in Harvard Style

Shellshear E. and Bohlin R. (2014). A Heuristic Framework for Path Planning the Largest Volume Object from a Start to Goal Configuration . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 264-271. DOI: 10.5220/0005002102640271


in Bibtex Style

@conference{icinco14,
author={Evan Shellshear and Robert Bohlin},
title={A Heuristic Framework for Path Planning the Largest Volume Object from a Start to Goal Configuration},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={264-271},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005002102640271},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A Heuristic Framework for Path Planning the Largest Volume Object from a Start to Goal Configuration
SN - 978-989-758-040-6
AU - Shellshear E.
AU - Bohlin R.
PY - 2014
SP - 264
EP - 271
DO - 10.5220/0005002102640271