An Automated Work Cycle Classification and Disturbance Detection Tool for Assembly Line Work Stations

Karel Bauters, Hendrik Van Landeghem, Maarten Slembrouck, Dimitri Van Cauwelaert, Dirk Van Haerenborgh

Abstract

The trend towards mass customization has led to a significant increase of the complexity of manufacturing systems. Models to evaluate the complexity have been developed, but the complexity analysis of work stations is still done manually. This paper describes an automated analysis tool that makes us of multi-camera video images to support the complexity analysis of assembly line work stations.

References

  1. MacDuffie, J. P. , Sethuraman, L., Fisher, M. L. (1996) 'Product Variety and Manufacturing Performance: Evidence from the International Automotive Assembly Plant Study', Management Science , vol. 42, no. 3, pp. 350-369.
  2. EIMaraghy, W. H , Urbanic, R.J. (2003) 'Modelling of Manufacturing Systems Complexity', CIRP Annals, vol. 52, issue 1, pp.363-366.
  3. EIMaraghy, W. H , Urbanic, R.J. (2004) 'Assessment of Manufacturing Operational Complexity', CIRP Annals, vol. 53, issue 1, pp. 401-406.
  4. Zeltzer, L., Limère,V., Aghezzaf, E. H., Van Landeghem, H. (2012) 'Measuring the Objective Complexity of Assembly Workstations', Conference Proceedings, Seventh International Conference on Computing in the Global Information Technology
  5. Karger, D. W., Hancock, W. M. (1982) Advanced work measurement, New York, Industrial Press
  6. Konz, S. (2001) Methods engineering. In Handbook of Industrial Engineering, 3rd edition., pp. 1353-1390, New York, Wiley
  7. Elnekave, M., Gilad, I. (2006) 'Rapid video-based analysis system for advanced work measurement', International Journal of Production Research, vol. 44, issue 2, pp. 271-290
  8. Dencker, B., Balzer, H-J.,Theuerkauf, W. E., Schweres, M. (1999) 'Using a production-integrated video learning system (PVL) in the assembly sector of the car manufacturing industry', International Journal of Production Ergonomics, Vol. 23, Issues 5-6, pp. 525- 537
  9. Taylor, P. (2011) 'From figure skaters to the factory floor' [online], Available: http://www.ft.com/intl/cms/s/ 0/fc571624-ce98-11e0-a22c-00144feabdc0.html [24 Jun 2014]
  10. Fisher, M. L. and Ittner, C. D. (1999), 'The impact of product variety on automobile assembly operations: empirical evidence and simulation analysis', Management Science, Vol. 45, pp. 771-786
  11. Fisher, M. L., Jain, A. and MacDuffie, J.P. (1995) 'Strategies for product variety: lessons from the auto industry', B. Kogut & E.Bowman, Eds. Redesigning the Firm., pp. 116-154, Oxford U. Press
  12. Ouvriach, K., Dailey, M. N. (2010) 'Clustering human behaviours with dynamic time warping and hidden Markov models for a video surveillance system', Conference Proceedings, International Conference on electrical engineering/electronics computer telecommunications and information technology (ECTICON), pp. 884-888
  13. Slembrouck, M., Van Cauwelaert, D., Van Hamme, D., Van Haerenborgh, D., Van Hese, P., Veelaert, P., & Philips, W. (2014). Self-learning voxel-based multicamera occlusion maps for 3D reconstruction. Conference Proceedings, 9th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP - 2014), SCITEPRESS.
  14. Müller, M. (2007) Information Retrieval for Music and Motion, Springer
  15. Laurentini, A. (1994) The Visual Hull Concept for Silhouette-Based Image Understanding. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 16, no. 2, pp. 150- 162.
  16. Bodor, R., Jackson, B., Papanikolopoulos, N., (2003) 'Vision-Based Human Tracking and Activity Recognition', Conference Proceedings, 11th Mediterranean Conference on Control and Automation, Rodos
  17. Cristani, M., Raghavendra, R., Del Bue, A., Murino, V. (2013)Human behavior analysis in video surveillance: A Social Signal Processing perspective, Neurocomputing, Vol. 100, January, pp.86-97.
Download


Paper Citation


in Harvard Style

Bauters K., Van Landeghem H., Slembrouck M., Van Cauwelaert D. and Van Haerenborgh D. (2014). An Automated Work Cycle Classification and Disturbance Detection Tool for Assembly Line Work Stations . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 685-691. DOI: 10.5220/0005024406850691


in Bibtex Style

@conference{icinco14,
author={Karel Bauters and Hendrik Van Landeghem and Maarten Slembrouck and Dimitri Van Cauwelaert and Dirk Van Haerenborgh},
title={An Automated Work Cycle Classification and Disturbance Detection Tool for Assembly Line Work Stations},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={685-691},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005024406850691},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - An Automated Work Cycle Classification and Disturbance Detection Tool for Assembly Line Work Stations
SN - 978-989-758-040-6
AU - Bauters K.
AU - Van Landeghem H.
AU - Slembrouck M.
AU - Van Cauwelaert D.
AU - Van Haerenborgh D.
PY - 2014
SP - 685
EP - 691
DO - 10.5220/0005024406850691