Task Level Optimal Control of a Simulated Ball Batting Robot

Dennis Schüthe, Udo Frese

Abstract

We developed a task-oriented controller based on optimal finite horizon control. We demonstrate this on a flexible ball playing robot with redundant degrees of freedom. The task is to reach a specified Cartesian position and velocity of the bat at a specified time, in order to rebound the ball. The controller must maintain high accuracy and react to disturbances and changing conditions. Therefore, we formulate this as an optimal control problem giving the controller the possibility to autonomously distribute motor torques amongst the redundant degrees of freedom. In simulations, we show the accuracy of the controller, the intelligent distribution of motor torques, as well as robustness against disturbances and adaptation to changing conditions.

References

  1. Albu-Schaeffer, A., Ott, C., and Hirzinger, G. (2007). A unified passivity-based control framework for position, torque and impedance control of flexible joint robots. The International Journal of Robotics Research, 26(1):23-39.
  2. Berg, J., Patil, S., Alterovitz, R., Abbeel, P., and Goldberg, K. (2011). LQG-based planning, sensing, and control of steerable needles. In Hsu, D., Isler, V., Latombe, J.-C., and Lin, M., editors, Algorithmic Foundations of Robotics IX, volume 68 of Springer Tracts in Advanced Robotics, pages 373-389. Springer Berlin Heidelberg.
  3. Birbach, O. and Frese, U. (2013). A precise tracking algorithm based on raw detector responses and a physical motion model. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany, pages 4746-4751.
  4. Featherstone, R. (2008). Rigid body dynamics algorithms, volume 49. Springer Berlin.
  5. Featherstone, R. (2010). A beginner's guide to 6-D vectors (part 2) [tutorial]. Robotics Automation Magazine, IEEE, 17(4):88-99.
  6. Featherstone, R. (2012). Spatial v2 (version 2). http://royfeatherstone.org/spatial/v2/notice.html.
  7. Goretkin, G., Perez, A., Platt, R., and Konidaris, G. (2013). Optimal sampling-based planning for linear-quadratic kinodynamic systems. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 2429-2436.
  8. Hammer, T. (2011). Aufbau, Ansteuerung und Simulation eines interaktiven Ballspielroboters. Master's thesis, Universitaet Bremen.
  9. Hu, J.-S., Chien, M.-C., Chang, Y.-J., Su, S.-H., and Kai, C.-Y. (2010). A ball-throwing robot with visual feedback. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 2511- 2512.
  10. Kober, J., Mulling, K., Kromer, O., Lampert, C. H., Scholkopf, B., and Peters, J. (2010). Movement templates for learning of hitting and batting. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 853-858.
  11. Laue, T., Birbach, O., Hammer, T., and Frese, U. (2013). An entertainment robot for playing interactive ball games. In RoboCup 2013: Robot Soccer World Cup XVII, Lecture Notes in Artificial Intelligence. Springer. to appear.
  12. Muelling, K., Kober, J., Kroemer, O., and Peters, J. (2013). Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 32(3):263-279.
  13. Nakai, H., Taniguchi, Y., Uenohara, M., Yoshimi, T., Ogawa, H., Ozaki, F., Oaki, J., Sato, H., Asari, Y., Maeda, K., Banba, H., Okada, T., Tatsuno, K., Tanaka, E., Yamaguchi, O., and Tachimori, M. (1998). A volleyball playing robot. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, volume 2, pages 1083-1089 vol.2.
  14. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., and Lozano-Perez, T. (2012). LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 2537-2542.
  15. Reist, P. and Tedrake, R. (2010). Simulation-based lqrtrees with input and state constraints. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 5504-5510.
  16. Senoo, T., Namiki, A., and Ishikawa, M. (2006). Ball control in high-speed batting motion using hybrid trajectory generator. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages 1762-1767.
  17. Siciliano, B. and Khatib, O. (2008). Springer handbook of robotics. Springer.
  18. Sontag, E. D. (1990). Mathematical control theory: deterministic finite dimensional systems. Texts in applied mathematics ; 6. Springer, New York [u.a.].
  19. Spong, M. W. (1995). Adaptive control of flexible joint manipulators: Comments on two papers. Automatica, 31(4):585 - 590.
  20. Zhang, P.-Y. and L, T.-S. (2007). Real-time motion planning for a volleyball robot task based on a multi-agent technique. Journal of Intelligent and Robotic Systems, 49(4):355-366.
Download


Paper Citation


in Harvard Style

Schüthe D. and Frese U. (2014). Task Level Optimal Control of a Simulated Ball Batting Robot . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 45-56. DOI: 10.5220/0005026100450056


in Bibtex Style

@conference{icinco14,
author={Dennis Schüthe and Udo Frese},
title={Task Level Optimal Control of a Simulated Ball Batting Robot},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={45-56},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005026100450056},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Task Level Optimal Control of a Simulated Ball Batting Robot
SN - 978-989-758-040-6
AU - Schüthe D.
AU - Frese U.
PY - 2014
SP - 45
EP - 56
DO - 10.5220/0005026100450056