Artificial Neural Network Models of Intersegmental Reflexes

Alicia Costalago Meruelo, David M. Simpson, S. Veres, Philip L. Newland

Abstract

In many animals intersegmental reflexes are important for postural control and movement making them ideal candidates for the bio-inspired design of medical treatment for neuromuscular injuries in cases such as drop foot and possibly in robot design. In this paper we study an intersegmental reflex of the foot (tarsus) of the locust hind leg, which is a reflex that raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to quantify the intersegmental responses in which an Artificial Neural Network, the Time Delay Neural Network, is applied. The architecture of the network is optimised through a metaheuristic algorithm to produce accurate predictions with short computational time and complexity and high generalisation to different individual responses. The results show that ANNs provide accurate predictions when trained with an average reflex response to Gaussian White Noise stimulation compared to autoregressive models. Furthermore, the network model can calculate the individual responses from each of the animals and responses to another input such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neuromuscular disorders.

References

  1. Angeline, P. J., G. M. Saunders and J. B. Pollack (1994). "An evolutionary algorithm that constructs recurrent neural networks." Neural Networks, IEEE Transactions on 5(1): 54-65.
  2. Benardos, P. G. and G.-C. Vosniakos (2007). "Optimizing feedforward artificial neural network architecture." Eng. Appl. Artif. Intell. 20(3): 365-382.
  3. Bishop, C. M. (1995). Neural networks for pattern recognition, Oxford university press.
  4. Burrows, M. (1996). The neurobiology of an insect brain. Oxford University Press, Oxford ;.
  5. Burrows, M. and G. A. Horridge (1974). "The Organization of Inputs to Motoneurons of the Locust Metathoracic Leg." Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 269(896): 49-94.
  6. Burrows, M., G. J. Laurent and L. H. Field (1988). "Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg." The Journal of Neuroscience 8(8): 3085- 3093.
  7. Büschges, A. (2005). "Sensory Control and Organization of Neural Networks Mediating Coordination of Multisegmental Organs for Locomotion." Journal of Neurophysiology 93(3): 1127-1135.
  8. Bush, B. M., J. P. Vedel and F. Clarac (1978). "Intersegmental reflex actions from a joint sensory organ (CB) to a muscle receptor (MCO) in decapod crustacean limbs." The Journal of Experimental Biology 73(1): 47-63.
  9. Carvalho, A. R., F. M. Ramos and A. A. Chaves (2011). "Metaheuristics for the feedforward artificial neural network (ANN) architecture optimization problem." Neural Comput. Appl. 20(8): 1273-1284.
  10. Dewhirst, O. P. (2013). Validation of Nonlinear System Identification Models of the Locust Hind Limb Control System using Natural Stimulation. PhD Thesis, Southampton University.
  11. Dewhirst, O. P., N. Angarita-Jaimes, D. M. Simpson, R. Allen and P. L. Newland (2012). "A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs." J Comput Neurosci: 1-20.
  12. Dewhirst, O. P., D. M. Simpson, R. Allen and P. L. Newland (2009). Neuromuscular reflex control of limb movement - validating models of the locusts hind leg control system using physiological input signals. Neural Engineering, 2009. NER 7809. 4th International IEEE/EMBS Conference.
  13. Eiben, A. E. and J. E. Smith (2003). Introduction to Evolutionary Computing, SpringerVerlag.
  14. Faisal, A. A., L. P. J. Selen and D. M. Wolpert (2008). "Noise in the nervous system." Nat Rev Neurosci 9(4): 292-303.
  15. Field, L. H. and M. Burrows (1982). "Reflex Effects of the Femoral Chordotonal Organ Upon Leg Motor Neurones of the Locust." Journal of Experimental Biology 101(1): 265-285.
  16. Field, L. H. and T. Matheson (1998). Chordotonal Organs of Insects. Advances in Insect Physiology. P. D. Evans, Academic Press. Volume 27: 1-228.
  17. Field, L. H. and F. C. Rind (1981). "A single insect chordotonal organ mediates inter- and intra-segmental leg reflexes." Comparative Biochemistry and Physiology Part A: Physiology 68(1): 99-102.
  18. Haykin, S. (1999). Neural networks: a comprehensive foundation, Prentice Hall PTR.
  19. Haykin, S. S. (2002). Adaptive filter theory, Prentice Hall.
  20. Herr , H. M. and A. M. Grabowski (2011). "Bionic anklefoot prosthesis normalizes walking gait for persons with leg amputation." Proceedings of the Royal Society B: Biological Sciences.
  21. Hunt, K. J., D. Sbarbaro, R. Zbikowski and P. J. Gawthrop (1992). "Neural networks for control systems-A survey." Automatica 28(6): 1083-1112.
  22. Kennedy, J. and R. Eberhart (1995). Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference.
  23. Korenberg, M. and I. Hunter (1990). "The identification of nonlinear biological systems: Wiener kernel approaches." Annals of Biomedical Engineering 18(6): 629-654.
  24. Ljung, L. (1999). System Identification. Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc.
  25. Marder, E. and A. L. Taylor (2011). "Multiple models to capture the variability in biological neurons and networks." Nat Neurosci 14(2): 133-138.
  26. Newland, P. L. and Y. Kondoh (1997). "Dynamics of Neurons Controlling Movements of a Locust Hind Leg III. Extensor Tibiae Motor Neurons." Journal of Neurophysiology 77(6): 3297-3310.
  27. Pearson, K. G. (1993). "Common principles of motor control in vertebrates and invertebrates." Annual review of neuroscience 16(1): 265-297.
  28. Prochazka, A., F. Clarac, G. E. Loeb, J. C. Rothwell and J. R. Wolpaw (2000). "What do reflex and voluntary mean? Modern views on an ancient debate." Experimental Brain Research 130(4): 417-432.
  29. Shelton, P. M. J., R. O. Stepehn, J. J. A. Scott and A. R. Tindall (1992). "The Apodeme Complex Of The Femoral Chordotonal Organ In The Metathoracic Leg Of The Locust Schistocerca Gregaria." Journal of Experimental Biology 163(1): 345-358.
  30. Shi, Y. and R. C. Eberhart (1998). A modified particle swarm optimizer. Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference.
  31. Smith, J. L., M. G. Hoy, G. F. Koshland, D. M. Phillips and R. F. Zernicke (1985). "Intralimb coordination of the paw-shake response: a novel mixed synergy." Journal of Neurophysiology 54(5): 1271-1281.
  32. Suraweera, N. P. and D. N. Ranasinghe (2008). A Natural Algorithmic Approach to the Structural Optimisation of Neural Networks. Information and Automation for Sustainability, 2008. ICIAFS 2008. 4th International Conference.
  33. Twickel, A., A. Büschges and F. Pasemann (2011). "Deriving neural network controllers from neurobiological data: implementation of a single-leg stick insect controller." Biological Cybernetics 104(1-2): 95-119.
  34. Waibel, A., T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang (1989). "Phoneme recognition using time-delay neural networks." Acoustics, Speech and Signal Processing, IEEE Transactions on 37(3): 328-339.
Download


Paper Citation


in Harvard Style

Costalago Meruelo A., M. Simpson D., Veres S. and L. Newland P. (2014). Artificial Neural Network Models of Intersegmental Reflexes . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 24-31. DOI: 10.5220/0005029000240031


in Bibtex Style

@conference{ncta14,
author={Alicia Costalago Meruelo and David M. Simpson and S. Veres and Philip L. Newland},
title={Artificial Neural Network Models of Intersegmental Reflexes},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={24-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005029000240031},
isbn={978-989-758-054-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - Artificial Neural Network Models of Intersegmental Reflexes
SN - 978-989-758-054-3
AU - Costalago Meruelo A.
AU - M. Simpson D.
AU - Veres S.
AU - L. Newland P.
PY - 2014
SP - 24
EP - 31
DO - 10.5220/0005029000240031