Using Hypergraph-based User Profile in a Recommendation System

Hilal Tarakci, Nihan Kesim Cicekli

Abstract

We propose a hypergraph-based user profile which facilitates aggregating partial profiles of the individual and obtain a complete, multi-domain user model. The aggregation involves a semantic enhancement procedure which results in enriched user profiles. The proposed user model is capable of extracting general and domainbased user profiles and answering several connected data queries such as recommendation, in reasonable time. In this paper, we present a recommendation case study which uses the proposed user model and illustrate the traversal algorithms for a variety of connected data problems.

References

  1. Abdel-Hafez, A. and Xu, Y. (2013). A survey of user modelling in social media websites. Computer and Information Science, 6(4):59-71.
  2. Abel, F., Herder, E., Houben, G.-J., Henze, N., and Krause, D. (2013). Cross-system user modeling and personalization on the social web. User Modeling and UserAdapted Interaction, 23(2-3):169-209.
  3. Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., and He, X. (2010). Music recommendation by unified hypergraph: Combining social media information and music content. In Proceedings of the International Conference on Multimedia, MM 7810, pages 391-400, New York, NY, USA. ACM.
  4. Cena, F., Likavec, S., and Osborne, F. (2013). Anisotropic propagation of user interests in ontology-based user models. Inf. Sci., 250:40-60.
  5. Chen, B., Wang, J., Huang, Q., and Mei, T. (2012). Personalized video recommendation through tripartite graph propagation. In Babaguchi, N., Aizawa, K., Smith, J. R., Satoh, S., Plagemann, T., Hua, X.-S., and Yan, R., editors, ACM Multimedia, pages 1133-1136. ACM.
  6. Gallo, G., Longo, G., and Pallottino, S. (1993). Directed hypergraphs and applications. Discrete Applied Mathematics, 42(2):177-201.
  7. Gauch, S., Speretta, M., Chandramouli, A., and Micarelli, A. (2007). The adaptive web. In Brusilovsky, P., Kobsa, A., and Nejdl, W., editors, The Adaptive Web, chapter User Profiles for Personalized Information Access, pages 54-89. Springer-Verlag, Berlin, Heidelberg.
  8. Ghosh, R. and Dekhil, M. (2008). Mashups for semantic user profiles. In Proceedings of the 17th International Conference on World Wide Web, WWW 7808, pages 1229-1230, New York, NY, USA. ACM.
  9. Kramar, T., Barla, M., and Bielikova, M. (2013). Personalizing search using socially enhanced interest model built from the stream of user's activity. J. Web Eng., 12(1-2):65-92.
  10. Li, L. and Li, T. (2013). News recommendation via hypergraph learning: encapsulation of user behavior and news content. In Leonardi, S., Panconesi, A., Ferragina, P., and Gionis, A., editors, WSDM, pages 305- 314. ACM.
  11. Orlandi, F., Breslin, J. G., and Passant, A. (2012). Aggregated, interoperable and multi-domain user profiles for the social web. In Presutti, V. and Pinto, H. S., editors, I-SEMANTICS, pages 41-48. ACM.
  12. Plumbaum, T., Schulz, K., Kurze, M., and Albayrak, S. (2011). My personal user interface: A semantic usercentric approach to manage and share user information. In Smith, M. J. and Salvendy, G., editors, HCI (11), volume 6771 of Lecture Notes in Computer Science, pages 585-593. Springer.
  13. Robinson, I., Webber, J., and Eifrem, E. (2013). Graph Databases. O'Reilly, Beijing.
  14. Tarakci, H. and Cicekli, N. K. (2012a). Ubiquitous fuzzy user modeling for multi-application environments by mining socially enhanced online traces. In Masthoff, J., Mobasher, B., Desmarais, M. C., and Nkambou, R., editors, UMAP, volume 7379 of Lecture Notes in Computer Science, pages 387-390. Springer.
  15. Tarakci, H. and Cicekli, N. K. (2012b). Ucasfum: A ubiquitous context-aware semantic fuzzy user modeling system. In Filipe, J. and Dietz, J. L. G., editors, KEOD, pages 278-283. SciTePress.
  16. Tiroshi, A. (2012). Graph based user modeling. In Duarte, C., Carrio, L., Jorge, J. A., Oviatt, S. L., and Gonalves, D., editors, IUI, pages 371-374. ACM.
  17. Tiroshi, A., Berkovsky, S., Kaafar, M. A., Chen, T., and Kuflik, T. (2013). Cross social networks interests predictions based ongraph features. In Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 7813, pages 319-322, New York, NY, USA. ACM.
  18. Wischenbart, M., Mitsch, S., Kapsammer, E., Kusel, A., Prll, B., Retschitzegger, W., Schwinger, W., Schnbck, J., Wimmer, M., and Lechner, S. (2012). User profile integration made easy: model-driven extraction and transformation of social network schemas. In Mille, A., Gandon, F. L., Misselis, J., Rabinovich, M., and Staab, S., editors, WWW (Companion Volume), pages 939-948. ACM.
Download


Paper Citation


in Harvard Style

Tarakci H. and Kesim Cicekli N. (2014). Using Hypergraph-based User Profile in a Recommendation System . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2014) ISBN 978-989-758-049-9, pages 27-35. DOI: 10.5220/0005029600270035


in Bibtex Style

@conference{keod14,
author={Hilal Tarakci and Nihan Kesim Cicekli},
title={Using Hypergraph-based User Profile in a Recommendation System},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2014)},
year={2014},
pages={27-35},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005029600270035},
isbn={978-989-758-049-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2014)
TI - Using Hypergraph-based User Profile in a Recommendation System
SN - 978-989-758-049-9
AU - Tarakci H.
AU - Kesim Cicekli N.
PY - 2014
SP - 27
EP - 35
DO - 10.5220/0005029600270035