On the Asymptotic Stability Analysis of a Certain Type of Discrete-time 3-D Linear Systems

Guido Izuta

Abstract

This work is concerned with the analysis of 3-d (3-dimensional) systems. The aim is to establish conditions that guarantee the asymptotic stability of these kinds of systems. To accomplish it, the Lagrange candidate solutions method for partial difference equations is adopted here. We show that the systems are asymptotically stable if the entries of the matrices of their state space descriptions yield a solution in the Lagrange solution sense. Furthermore, the particular cases in which the matrices can be turned into a diagonal matrix by means of the canonical transformation is studied in order to figure out the role of the eigenvalues on the stability conditions.

References

  1. Ansell, H. G. (1964). On certain two variable generalizations of circuit theory, with applications to networks of transmission lines and lumped reactances. In IRE Trans. on Circuit Theory, volume CT, pages 214-223.
  2. Attasi, S. (1973). Systemes lineaires homogenes a deux indices. In Rapport Laboria, number 31.
  3. Bose, N. K. (1982). Applied multdimensional systems theory. England: Van Nostradand Reinhold Co.
  4. Cheng, S. S. (2003). Partial difference equations. London: Taylor & Francis.
  5. Du, C. and Xie, L. (2002). H-infinity control and filtering of two-dimensional systems. Berlin, Germany: Springer Verlag.
  6. Elaydi, S. (2005). An introduction to difference equations. USA: Springer Science.
  7. Gantmatcher, F. R. (1959). The Theory of matrices. New York, USA: Chelsea.
  8. Izuta, G. (2007a). 2-d discrete linear control systems with multiple delays in the inputs and outputs on the basis of observer controllers. WSEAS trans. systems, 16(1):9-17.
  9. Izuta, G. (2007b). Stability and disturbance attenuation of 2-d discrete delayed systems via memory state feedback controller. Int. J. Gen. Systems, 36(3):263-280.
  10. Izuta, G. (2007c). Stability of a class of 2-d output feedback control system. In Proc. IEEE SMC'07, Montreal, Canada. CDROM format.
  11. Izuta, G. (2010a). Stability analysis of 2-d discrete systems on the basis of lagrange solutions and doubly similarity transformed systems. In Proc. 35th annual conf. IEEE IES, Porto, Portugal. CDROM format.
  12. Izuta, G. (2010b). Stability analysis of 2-d linear discrete feedback control systems with state delays on the basis of Lagrange solutions, pages 311-329. Sciyo.
  13. Jerri, A. J. (1996). Linear difference equations with discrete transform methods. Netherlands: Kluwer Acad. Pub.
  14. Juri, E. I. (1978). Stability of multidimensional scalar and matrix polynomials. In Proc. IEEE, number 66, pages 1018-1047.
  15. Kasami, H. O. . T. (1960). Positive real functions of several variables and their applications to variable network. In IRE Trans. on Circuit Theory, volume CT, pages 251-260.
  16. Leondes, C., editor (1995). Multidimensional Systems: Signal Processing and Modeling Techniques Advances in Theory and Applications. Academic Press.
  17. Lim, J. S. (1990). Two-dimensional linear signal and image processing. New Jersey, USA: Prentice Hall.
  18. Marchesini, E. F. . G. (1978). Doubly indexed dynamical systems: State space models and structural properties. In Math. Syst. Th., number 12, pages 59-72.
  19. Matsuo, T. and Hasegawa, Y. (2003). Discrete-Time Dynamical Systems, two-Dimensional Linear Systems. Springer-Verlag, Lecture Notes in Control and Information Sciences.
  20. Roesser, D. D. G. . R. P. (1972). Multidimensional linear iterative circuits - general properties. In IEEE Trans. Comp., volume C, pages 1067-1073.
  21. Roesser, D. P. (1975). A discrete state-space model for image processing. In IEEE Trans. Automat. Contr., volume AC, pages 1-10.
  22. Rosenthal, J. and Gilliam, D. S. (2003). Mathematical Systems Theory in Biology, Communications, Computation and Finance Advances in Theory and Applications. Springer.
  23. Russell, J. and Cohn, R. (2013). Multidimensional Systems. Book on Demand Ltd.
  24. Suda, S. K. . N. (1978). Matrix theory for control systems (in Japanese). Japan: Sice.
  25. Tzafestas, S. G. (1986). Multidimensional systems - Techniques and Applications. New York: Marcel Dekker.
  26. W. S. Lu, A. A. (1992). Two-Dimensional Digital Filters. New York:Marcel Dekker.
  27. Wall, F. T. (1987). Discrete wave mechanics: Multidimensional systems. In Proc. Natl. Acad. Sci. USA, volume 84, pages 3091-3094.
  28. Wood, K. G. . J. D. (2004). Multidimensional Signals, Circuits and Systems. CRC Press.
  29. Zerz, E. (2000). Topics in Multidimensional Linear Systems Theory. Springer.
Download


Paper Citation


in Harvard Style

Izuta G. (2014). On the Asymptotic Stability Analysis of a Certain Type of Discrete-time 3-D Linear Systems . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 665-670. DOI: 10.5220/0005043306650670


in Bibtex Style

@conference{icinco14,
author={Guido Izuta},
title={On the Asymptotic Stability Analysis of a Certain Type of Discrete-time 3-D Linear Systems},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={665-670},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005043306650670},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - On the Asymptotic Stability Analysis of a Certain Type of Discrete-time 3-D Linear Systems
SN - 978-989-758-039-0
AU - Izuta G.
PY - 2014
SP - 665
EP - 670
DO - 10.5220/0005043306650670