# A Noise Resilient and Non-parametric Graph-based Classifier

### Mahdi Mohammadi, Saeed Adel Mehraban, Elnaz Bigdeli, Bijan Raahemi, Ahmad Akbari

#### Abstract

In this paper, we propose a non-parametric and noise resilient graph-based classification algorithm. In designing the proposed method, we represent each class of dataset as a set of sub-graphs. The main part of the training phase is how to build the classification graph based on the non-parametric k-associated optimal graph algorithm which is an extension of the parametric k-associated graph algorithm. In this paper, we propose a new extension and modification of the training phase of the k-associated optimal graph algorithm. We compare the modified version of the k-associated optimal graph (MKAOG) algorithm with the original k-associated optimal graph algorithm (KAOG). The experimental results demonstrate superior performance of our proposed method in the presence of different levels of noise on various datasets from the UCI repository.

#### References

- Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation 15 (2003) 1373-1396.
- Bertini Jr, Liang Zhao, Robson Motta, Alneu de Andrade Lopes, 'A nonparametric classification method based on K-associated graphs', Information Sciences 181 (2011) 5435-5456.
- Chatterjee A, Raghava P, 'Similarity Graph Neighborhoods for Enhanced Supervised Classification', Procedia Computer Science, Volume 9, 2012, Pages 577-586.
- Chen, L. Li, J. Peng, Error bounds of multi-graph regularized semi-supervised classification, Information Sciences 179 (2009) 1960-1969.
- Deshpande, M. Kuramochi, and G. Karypis, “Frequent Sub-Structure-Based Approaches for Classifying Chemical Compounds,” IEEE Transactionson Knowledge and Data Engineering, vol. 17, no. 8, pp. 1036- 1050, 2005.
- Dhanjala C, Gaudelb R, Clémençonc S, 'Efficient eigenupdating for spectral graph clustering', Neurocomputing, Volume 131, 5 May 2014, Pages 440-452.
- Gonzalez, L. Holder, and D. Cook, “Graph-based relational concept learning,” Proceedings of the Nineteenth International Conference on Machine Learning, 2002.
- Jun Ye, Zhong Jin, “Dual-graph regularized Concept Factorization for Clustering”, Neurocomputing, In Press, Accepted Manuscript, Available online 13 April 2014.
- Ketkar, N.S. ; Holder, L.B. ; Cook, D.J.,78 Empirical comparison of graph classification algorithms', Computational Intelligence and Data Mining, 2009. CIDM 7809. 259 - 266.
- Marios Iliofotou, Hyun-chul Kim, Michalis Faloutsos, Michael Mitzenmacher, Prashanth Pappu, George Varghese, 'Graption: A graph-based P2P traffic classification framework for the internet backbone', Computer Networks 55 (2011) 1909-1920.
- Vathy-Fogarassy, J. Abonyi, Local and global mappings of topology representing networks, Information Sciences 179 (2009) 3791-3803.
- Zhu X, Semi-Supervised Learning Literature Survey, Technical Report 1530, Computer-Science, University of Wisconsin-Madison, 2008.

#### Paper Citation

#### in Harvard Style

Mohammadi M., Adel Mehraban S., Bigdeli E., Raahemi B. and Akbari A. (2014). **A Noise Resilient and Non-parametric Graph-based Classifier** . In *Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)* ISBN 978-989-758-048-2, pages 170-175. DOI: 10.5220/0005051801700175

#### in Bibtex Style

@conference{kdir14,

author={Mahdi Mohammadi and Saeed Adel Mehraban and Elnaz Bigdeli and Bijan Raahemi and Ahmad Akbari},

title={A Noise Resilient and Non-parametric Graph-based Classifier},

booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)},

year={2014},

pages={170-175},

publisher={SciTePress},

organization={INSTICC},

doi={10.5220/0005051801700175},

isbn={978-989-758-048-2},

}

#### in EndNote Style

TY - CONF

JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)

TI - A Noise Resilient and Non-parametric Graph-based Classifier

SN - 978-989-758-048-2

AU - Mohammadi M.

AU - Adel Mehraban S.

AU - Bigdeli E.

AU - Raahemi B.

AU - Akbari A.

PY - 2014

SP - 170

EP - 175

DO - 10.5220/0005051801700175