A Multi-layer Approach for Interactive Path Planning Control

Simon Cailhol, Philippe Fillatreau, Jean-Yves Fourquet, Yingshen Zhao

Abstract

This work considers path-planning processes for manipulation tasks such as assembly, maintenance or disassembly in a Virtual Reality (VR) context. The approach consists in providing a collaborative system associating a user immersed in VR and an automatic path planning process. It is based on semantic, topological and geometric representations of the environment and the planning process is split in two phases: coarse and fine planning. The automatic planner suggests a path to the user and guides him trough a haptic device. The user can escape from the proposed solution if he wants to explore a possible better way. In this case, the interactive system detects the user’s intention in real-time and computes a new path starting from the user’s guess. Experiments illustrate the different aspects of the approach: multi-representation of the environment, path planning process, user’s intent prediction and control sharing.

References

  1. Aarno, D., Ekvall, S., and Kragic, D. (2005). Adaptive virtual fixtures for machine-assisted teleoperation tasks. In International Conference on Robotics and Automation, ICRA. Proceedings, pages 1139-1144. IEEE.
  2. Abbink, D. A. and Mulder, M. (2010). Neuromuscular analysis as a guideline in designing shared control. Advances in haptics, 109:499-516.
  3. Ahmadi-Pajouh, M. A., Towhidkhah, F., Gharibzadeh, S., and Mashhadimalek, M. (2007). Path planning in the hippocampo-prefrontal cortex pathway: An adaptive model based receding horizon planner. Medical hypotheses, 68(6):1411-1415.
  4. Anderson, S., Peters, S., Iagnemma, K., and Overholt, J. (2010). Semi-autonomous stability control and hazard avoidance for manned and unmanned ground vehicles. Technical report, DTIC Document.
  5. CGAL (2014). CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
  6. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269- 271.
  7. Dragan, A. D. and Srinivasa, S. S. (2013). A policy blending formalism for shared control. International Journal of Robotics Research.
  8. Fagg, A. H., Rosenstein, M., Platt, R., and Grupen, R. A. (2004). Extracting user intent in mixed initiative teleoperator control. In Proc. American Institute of Aeronautics and Astronautics Intelligent Systems Technical Conference.
  9. Fillatreau, P., Fourquet, J.-Y., Le Bolloch, R., Cailhol, S., Datas, A., and Puel, B. (2013). Using virtual reality and 3d industrial numerical models for immersive interactive checklists. Computers in Industry.
  10. Flemisch, F., Heesen, M., Hesse, T., Kelsch, J., Schieben, A., and Beller, J. (2012). Towards a dynamic balance between humans and automation: authority, ability, responsibility and control in shared and cooperative control situations. Cognition, Technology & Work, 14(1):3-18.
  11. Ladeveze, N., Fourquet, J.-Y., and Puel, B. (2010). Interactive path planning for haptic assistance in assembly tasks. Computers & Graphics, 34(1):17-25.
  12. LaValle, S. (2006). Planning algorithms. Cambridge University Press.
  13. Li, M. and Okamura, A. M. (2003). Recognition of operator motions for real-time assistance using virtual fixtures. In 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS. Proceedings., pages 125-131. IEEE.
  14. Loizou, S. G. and Kumar, V. (2007). Mixed initiative control of autonomous vehicles. In International Conference on Robotics and Automation., pages 1431-1436. IEEE.
  15. Lozano-Perez, T. (1980). Spatial planning: A configuration space approach. IEEE Transactions on Computers, 100(2):108-120.
  16. Marayong, P., Li, M., Okamura, A. M., and Hager, G. D. (2003). Spatial motion constraints: Theory and demonstrations for robot guidance using virtual fixtures. In International Conference on Robotics and Automation, Proceedings. ICRA, volume 2, pages 1954-1959. IEEE.
  17. Taïx, M., Flavigné, D., and Ferré, E. (2012). Human interaction with motion planning algorithm. Journal of Intelligent & Robotic Systems, 67(3-4):285-306.
  18. Weber, C., Nitsch, V., Unterhinninghofen, U., Farber, B., and Buss, M. (2009). Position and force augmentation in a telepresence system and their effects on perceived realism. In EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint, pages 226-231. IEEE.
  19. You, E. and Hauser, K. (2012). Assisted teleoperation strategies for aggressively controlling a robot arm with 2d input. Robotics: Science and Systems VII, page 354.
  20. Yu, W., Alqasemi, R., Dubey, R., and Pernalete, N. (2005). Telemanipulation assistance based on motion intention recognition. In International Conference on Robotics and Automation, ICRA Proceedings, pages 1121-1126. IEEE.
Download


Paper Citation


in Harvard Style

Cailhol S., Fillatreau P., Fourquet J. and Zhao Y. (2014). A Multi-layer Approach for Interactive Path Planning Control . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 90-101. DOI: 10.5220/0005055200900101


in Bibtex Style

@conference{icinco14,
author={Simon Cailhol and Philippe Fillatreau and Jean-Yves Fourquet and Yingshen Zhao},
title={A Multi-layer Approach for Interactive Path Planning Control},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={90-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005055200900101},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A Multi-layer Approach for Interactive Path Planning Control
SN - 978-989-758-040-6
AU - Cailhol S.
AU - Fillatreau P.
AU - Fourquet J.
AU - Zhao Y.
PY - 2014
SP - 90
EP - 101
DO - 10.5220/0005055200900101