Differential Evolution Algorithm Based Spatial Multi-sensor Image Fusion

Veysel Aslantas, Emre Bendes

Abstract

In this paper, a new optimised region based multi-sensor image fusion method is presented. The proposed method works on spatial domain. Differential evolution algorithm is used to optimize the contribution of the input images to fused images based on regions. The method was compared visually and quantitatively with Laplacian Pyramid (LP) and Shift-invariance Discrete Wavelet Transform (SiDWT) methods. Experimental results show that the developed method outperforms other traditional methods and can effectively improve the quality of the fused image.

References

  1. Aslantas, V., Bendes, E., Kurban, R. & Toprak, A. N. 2013. New Optimised Region-Based Multi-Scale Image Fusion Method For Thermal And Visible Images. Institution Of Engineering And Technology.
  2. Aslantas, V. & Kurban, R. 2009. A Comparison Of Criterion Functions For Fusion Of Multi-Focus Noisy Images. Optics Communications, 282, 3231-3242.
  3. Aslantas, V. & Kurban, R. 2010. Fusion Of Multi-Focus Images Using Differential Evolution Algorithm. Expert Systems With Applications, 37, 8861-8870.
  4. Burt, P. J. & Adelson, E. H. 1983. The Laplacian Pyramid As A Compact Image Code. Communications, Ieee Transactions On, 31, 532-540.
  5. Group, I. I. P. R. 2012. Image Database For Image Fusion Applications [Online]. Kayseri: Erciyes University. Available: Http://Ce.Erciyes.Edu.Tr/Fusiondatabase/ [Accessed].
  6. Huang, W. & Jing, Z. 2007. Multi-Focus Image Fusion Using Pulse Coupled Neural Network. Pattern Recognition Letters, 28, 1123-1132.
  7. Kun, L., Lei, G., Huihui, L. & Jingsong, C. 2009. Fusion Of Infrared And Visible Light Images Based On Region Segmentation. Chinese Journal Of Aeronautics, 22, 75-80.
  8. Lewis, J., Nikolov, S. & Toet, L. 2005. The Multi-Sensor Image Segmentation Data Set [Online]. Available: Http://Www.Imagefusion.Org/Images/MmSegmentations/Mm-Segmentations.Html [Accessed].
  9. Lewis, J. J., O'callaghan, R. J., Nikolov, S. G., Bull, D. R. & Canagarajah, N. 2007. Pixel- And Region-Based Image Fusion With Complex Wavelets. Information Fusion, 8, 119-130.
  10. Li, S., Yang, B. & Hu, J. 2011. Performance Comparison Of Different Multi-Resolution Transforms For Image Fusion. Information Fusion, 12, 74-84.
  11. Miao, Q., Shi, C., Xu, P., Yang, M. & Shi, Y. 2011. A Novel Algorithm Of Image Fusion Using Shearlets. Optics Communications, 284, 1540-1547.
  12. Mumtaz, A. & Majid, A. Year. Genetic Algorithms And Its Application To Image Fusion. In: Emerging Technologies. Icet 2008. 4th International Conference On, 18-19 Oct. 2008 2008. 6-10.
  13. Niu, Y. & Shen, L. 2006. Multi-Resolution Image Fusion Using Amopso-Ii. Intelligent Computing In Signal Processing And Pattern Recognition. Springer Berlin / Heidelberg.
  14. Price, K. & Storn, R. March 1995. Differential Evolution - A Simple And Efficient Adaptive Scheme For Global Optimization Over Continuous Spaces. Icsi.
  15. Qu, G. H., Zhang, D. L. & Yan, P. F. 2001. Medical Image Fusion By Wavelet Transform Modulus Maxima. Optics Express, 9, 184-190.
  16. Raghavendra, R., Dorizzi, B., Rao, A. & Hemantha Kumar, G. 2011. Particle Swarm Optimization Based Fusion Of Near Infrared And Visible Images For Improved Face Verification. Pattern Recognition, 44, 401-411.
  17. Rockinger, O. Year. Image Sequence Fusion Using A Shift-Invariant Wavelet Transform. In: Image Processing. Proceedings., International Conference On, 26-29 Oct 1997 1997. 288-291.
  18. Toet, A., Ijspeert, J. K., Waxman, A. M. & Aguilar, M. 1997. Fusion Of Visible And Thermal Imagery Improves Situational Awareness. Displays, 18, 85-95.
  19. Xue, Z., Blum, R. S. & Li, Y. Year. Fusion Of Visual And Ir Images For Concealed Weapon Detection. In: Information Fusion. Proceedings Of The Fifth International Conference On, 2002 2002. 1198-1205.
  20. Xydeas, C. S. & Petrovid, V. 2000. Objective Image Fusion Performance Measure. Electronics Letters 36, 308-309.
  21. Zhong, Z. & Blum, R. S. 1999. A Categorization Of Multiscale-Decomposition-Based Image Fusion Schemes With A Performance Study For A Digital Camera Application. Proceedings Of The Ieee, 87, 1315-1326.
Download


Paper Citation


in Harvard Style

Aslantas V. and Bendes E. (2014). Differential Evolution Algorithm Based Spatial Multi-sensor Image Fusion . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 718-725. DOI: 10.5220/0005056407180725


in Bibtex Style

@conference{icinco14,
author={Veysel Aslantas and Emre Bendes},
title={Differential Evolution Algorithm Based Spatial Multi-sensor Image Fusion},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={718-725},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005056407180725},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Differential Evolution Algorithm Based Spatial Multi-sensor Image Fusion
SN - 978-989-758-039-0
AU - Aslantas V.
AU - Bendes E.
PY - 2014
SP - 718
EP - 725
DO - 10.5220/0005056407180725