Self-calibration of Large Scale Camera Networks

Patrik Goorts, Steven Maesen, Yunjun Liu, Maarten Dumont, Philippe Bekaert, Gauthier Lafruit


In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in sport scenes. The calibration process determines precise camera parameters, both within each camera (focal length, principal point, etc) and inbetween the cameras (their relative position and orientation). To this end, we first extract candidate image correspondences over adjacent cameras, without using any calibration object, solely relying on existing feature matching computer vision algorithms applied on the input video streams. We then pairwise propagate these camera feature matches over all adjacent cameras using a chained, confident-based voting mechanism and a selection relying on the general displacement across the images. Experiments show that this removes a large amount of outliers before using existing calibration toolboxes dedicated to small scale camera networks, that would otherwise fail to work properly in finding the correct camera parameters over large scale camera networks. We succesfully validate our method on real soccer scenes.


  1. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In Computer VisionECCV 2006, pages 404-417. Springer.
  2. Doshi, A., Starck, J., and Hilton, A. (2010). An empirical study of non-rigid surface feature matching of human from 3d video. Journal of Virtual Reality and Broadcasting, 7(10).
  3. Farin, D., Han, J., and de With, P. H. (2005). Fast camera calibration for the analysis of sport sequences. In Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on, pages 4-pp. IEEE.
  4. Farin, D., Krabbe, S., Effelsberg, W., et al. (2003). Robust camera calibration for sport videos using court models. In Electronic Imaging 2004, pages 80-91. International Society for Optics and Photonics.
  5. Goorts, P., Ancuti, C., Dumont, M., and Bekaert, P. (2013). Real-time video-based view interpolation of soccer events using depth-selective plane sweeping. In Proceedings of the Eight International Conference on Computer Vision Theory and Applications (VISAPP 2013). INSTICC.
  6. Goorts, P., Maesen, S., Dumont, M., Rogmans, S., and Bekaert, P. (2014). Free viewpoint video for soccer using histogram-based validity maps in plane sweeping. In Proceedings of the Ninth International Conference on Computer Vision Theory and Applications (VISAPP 2014). INSTICC.
  7. Grau, O., Prior-Jones, M., and Thomas, G. (2005). 3d modelling and rendering of studio and sport scenes for tv applications. In Proceedings of WIAMIS.
  8. Hartley, R. and Zisserman, A. (2003). Multiple view geometry in computer vision, volume 2. Cambridge Univ Press.
  9. Hayet, J.-B., Piater, J. H., and Verly, J. G. (2005). Fast 2d model-to-image registration using vanishing points for sports video analysis. In ICIP (3), pages 417-420.
  10. Li, Q. and Luo, Y. (2004). Automatic camera calibration for images of soccer match. In International Conference on Computational Intelligence, pages 482-485.
  11. Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  12. Ohta, Y., Kitahara, I., Kameda, Y., Ishikawa, H., and Koyama, T. (2007). Live 3D Video in Soccer Stadium. International Journal of Computer Vision, 75(1):173- 187.
  13. Svoboda, T., Martinec, D., and Pajdla, T. (2005). A convenient multicamera self-calibration for virtual environments. Presence: Teleoperators & Virtual Environments, 14(4):407-422.
  14. Thomas, G. (2007). Real-time camera tracking using sports pitch markings. Journal of Real-Time Image Processing, 2(2-3):117-132.
  15. Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (2000). Bundle adjustmenta modern synthesis. In Vision algorithms: theory and practice, pages 298- 372. Springer.
  16. Yang, R., Welch, G., and Bishop, G. (2003). Real-time consensus-based scene reconstruction using commodity graphics hardware. Computer Graphics Forum, 22(2):207-216.
  17. Yu, X., Jiang, N., Cheong, L.-F., Leong, H. W., and Yan, X. (2009). Automatic camera calibration of broadcast tennis video with applications to 3d virtual content insertion and ball detection and tracking. Computer Vision and Image Understanding, 113(5):643-652.
  18. Zhang, Z. (2000). A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(11):1330-1334.

Paper Citation

in Harvard Style

Goorts P., Maesen S., Liu Y., Dumont M., Bekaert P. and Lafruit G. (2014). Self-calibration of Large Scale Camera Networks . In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014) ISBN 978-989-758-046-8, pages 107-116. DOI: 10.5220/0005057201070116

in Bibtex Style

author={Patrik Goorts and Steven Maesen and Yunjun Liu and Maarten Dumont and Philippe Bekaert and Gauthier Lafruit},
title={Self-calibration of Large Scale Camera Networks},
booktitle={Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)},

in EndNote Style

JO - Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)
TI - Self-calibration of Large Scale Camera Networks
SN - 978-989-758-046-8
AU - Goorts P.
AU - Maesen S.
AU - Liu Y.
AU - Dumont M.
AU - Bekaert P.
AU - Lafruit G.
PY - 2014
SP - 107
EP - 116
DO - 10.5220/0005057201070116