DMQEA: Dual Multiobjective Quantum-inspired Evolutionary Algorithm

Si-Jung Ryu, Jong-Hwan Kim, Ki-Baek Lee

Abstract

This paper proposes dual multiobjective quantum-inspired evolutionary algorithm (DMQEA) with the dualstage of dominance check by introducing secondary objectives in addition to primary objectives. The secondary objectives are to maximize global evaluation values and crowding distances of the solutions in the external global population obtained for the primary objectives and the previous archive obtained from the secondary objectives-based nondominated sorting. By employing the secondary objectives for sorting the solutions in each generation, DMQEA can induce the balanced exploration of the solutions in terms of user’s preference and diversity to generate preferable and diverse nondominated solutions in the archive. To demonstrate the effectiveness of the proposed DMQEA, empirical comparisons with MQEA, MQEA-PS, and NSGA-II are carried out for benchmark functions.

References

  1. Bajwa, G., Choo, E., and Wedley, W. (2008). Effectiveness analysis of deriving priority vectors from reciprocal pairwise comparison matrices. Asia-Pacific Journal of Operational Research, 25(3):279-299.
  2. Bosman, P. A. and Thierens, D. (2003). The balance between proximity and diversity in multiobjective evolutionary algorithms. evolutionary computation. IEEE Transactions on Evolutionary Computation, 7(2):174-188.
  3. Cui, X., Li, M., and Fang, T. (2001). Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles. In Proc. of IEEE Congress on Evolutionary Computation, pages 1316- 1321.
  4. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2):182-197.
  5. Han, K.-H. and Kim, J.-H. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 6(6):580-593.
  6. Han, K.-H. and Kim, J.-H. (2004). Quantum-inspired evolutionary algorithms with a new termination criterion, he gate, and two phase scheme. IEEE Transactions on Evolutionary Computation, 8(2):156-169.
  7. Hey, T. (1999). Quantum computing: an introduction. Computing and Control Engineering Journal, 10(3):105- 112.
  8. Kim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., and Kim, E.-S. (2012). Preference-based solution selection algorithm for evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16(1):20-34.
  9. Kim, J.-H., Kim, Y.-H., Choi, S.-H., and Park, I.-W. (2009). Evolutionary multi-objective optimization in robot soccer system for education. IEEE Computational Intelligence Magazine, 4(1):31-41.
  10. Kim, Y.-H., Kim, J.-H., and Han, K.-H. (2006). Quantuminspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems. In Proc. of IEEE Congress on Evolutionary Computation, pages 2601-2606.
  11. Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence and diversity in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 10(3):263-282.
  12. Lee, K.-B. and Kim, J.-H. (2012). Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots. IEEE Transactions on Evolutionary Computation, 17(6):755-766.
  13. Li, H., Zhang, Q., Tsang, E., and Ford, J. (2004). Hybrid estimation of distribution algorithm for multiobjective knapsack problem. Evolutionary Computation in Combinatorial Optimization, pages 145-154.
  14. Ryu, S.-J., Lee, K.-B., and Kim, J.-H. (2012). Improved version of a multiobjective quantum-inspired evolutionary algorithm with preference-based selection. In Proc. of IEEE World Congress on Computational Intelligence, pages 1672-1678.
  15. Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: methods and applications. Berichte aus der Informatik, Shaker Verlag, AachenMaastricht.
Download


Paper Citation


in Harvard Style

Ryu S., Kim J. and Lee K. (2014). DMQEA: Dual Multiobjective Quantum-inspired Evolutionary Algorithm . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 207-214. DOI: 10.5220/0005071802070214


in Bibtex Style

@conference{ecta14,
author={Si-Jung Ryu and Jong-Hwan Kim and Ki-Baek Lee},
title={DMQEA: Dual Multiobjective Quantum-inspired Evolutionary Algorithm},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},
year={2014},
pages={207-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005071802070214},
isbn={978-989-758-052-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - DMQEA: Dual Multiobjective Quantum-inspired Evolutionary Algorithm
SN - 978-989-758-052-9
AU - Ryu S.
AU - Kim J.
AU - Lee K.
PY - 2014
SP - 207
EP - 214
DO - 10.5220/0005071802070214