Enhanced Flower Pollination Approach Applied to Electromagnetic Optimization

Carlos Eduardo Klein, Emerson Hochsteiner de Vasconcelos Segundo, Viviana Cocco Mariani, Leandro dos Santos Coelho


It is difficult to use the deterministic mathematical tools such as a gradient method to solve global optimization problems. Flower pollination algorithm (FPA) is a new nature-inspired algorithm of the swarm intelligence field to global optimization applications, based on the characteristics of flowering plants. To enhance the performance of the standard FPA, an enhanced FPA (EFPA) approach based on beta probability distribution was proposed in this paper. In order to verify the performance of the proposed EFPA, five benchmark functions are chosen from the literature as the test suit. Furthermore, tests using Loney’s solenoid benchmark, a classical problem in the electromagnetics area, are realized to evaluate the effectiveness of the FPA and the proposed EFPA. Simulation results and comparisons with the FPA demonstrated that the performance of the EFPA approach is promising in electromagnetics optimization.


  1. Abdel-Raouf, O., El-Henawy, I., Abdel-Baset, M. (2014). A novel hybrid flower pollination algorithm with chaotic harmony search for solving Sudoku puzzles, International Journal of Modern Education and Computer Science, 3: 38-44.
  2. Ali, M. M. (2007). Synthesis of the ß-distribution as an aid to stochastic global optimization. Computational Statistics & Data Analysis, 52(1): 133-149.
  3. Ciuprina, G., Ioan, D., and Munteanu, I. (2002). Use of intelligent-particle swarm optimization in electromagnetics. IEEE Transactions on Magnetics 38(2): 1037-1040.
  4. Coelho, L. S. and Alotto, P. (2007). Loney's solenoid design using artificial immune network with local search based on Nelder-Mead simplex method, COMPUMAG, Aachen, Germany.
  5. Coelho, L. S., Guerra, F. A., Batistela, N. J., and Leite, J. V. (2013). Multiobjective cuckoo search algorithm based on Duffing's oscillator applied to Jiles-Atherton vector hysteresis parameters estimation. IEEE Transactions on Magnetics 49: 1745-1748.
  6. Dorigo, M. and Stützle, T. (2004). Ant colony optimization, MIT Press.
  7. Di Barba, P. and Savini, A. (1995). Global optimization of Loney's solenoid by means of a deterministic approach. International Journal of Applied Electromagnetics and Mechanics 6(4): 247-254.
  8. Eberhart, R. C., Shi, Y., and Kennedy, J. (2001). Swarm intelligence. The Morgan Kaufmann Series In Evolutionary Computation.
  9. Engelbrecht, A. P. (2007). Computational intelligence: an introduction, 2nd edition, John Wiley & Sons Ltd., New York, USA.
  10. Fernández, V. A., Galetto, L., and Astegiano, J. (2009). Influence of flower functionality and pollination system on the pollen size-pistil length relationship. Organisms Diversity & Evolution 9(2): 75-82.
  11. Gandomi, A. H. and Yang, X. -S. (2014). Chaotic bat algorithm. Journal of Computational Science 5(2): 224-232.
  12. Gandomi, A. H., Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation 17(12): 4831-4845.
  13. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, Turkey.
  14. Kasinger, H., Vauer, B. (2006). Beyond swarm intelligence: building self-managing systems based on pollination. GI Jahrestagung 1 93, LNI, 169-176.
  15. Kaur, G., Singh, D. (2012). Pollination based optimization for color image segmentation. International Journal of Computer Engineering & Technology 3(2): 407-414.
  16. Lévy, P. (1925). Calcul des probabilites. Gauthier Villars, Paris, France.
  17. Nolan, J. P. (2010). Stable distributions: models for heavy tailed data, Birkhauser, Boston, USA.
  18. Weng, L., Liu, Q., Xia, M., Song, Y. D. (2014). Immune network-based swarm intelligence and its application to unmanned aerial vehicle (UAV) swarm coordination. Neurocomputing 125: 134-141.
  19. Yang, X. -S. (2010). A new metaheuristic bat-Inspired algorithm. In: Gonzalez J. R. et al. (editors). Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Berlin: Springer, 65-74.
  20. Yang, X. -S. (2009). Firefly algorithms for multimodal optimization. Stochastic Algorithms: Foundations and Applications, SAGA. Lecture Notes in Computer Sciences vol. 5792, 169-178.
  21. Yang, X. -S. (2012). Flower pollination algorithm for global optimization. Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, vol. 7445, 240-249.

Paper Citation

in Harvard Style

Klein C., Segundo E., Mariani V. and Coelho L. (2014). Enhanced Flower Pollination Approach Applied to Electromagnetic Optimization . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 223-227. DOI: 10.5220/0005074502230227

in Bibtex Style

author={Carlos Eduardo Klein and Emerson Hochsteiner de Vasconcelos Segundo and Viviana Cocco Mariani and Leandro dos Santos Coelho},
title={Enhanced Flower Pollination Approach Applied to Electromagnetic Optimization},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},

in EndNote Style

JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - Enhanced Flower Pollination Approach Applied to Electromagnetic Optimization
SN - 978-989-758-052-9
AU - Klein C.
AU - Segundo E.
AU - Mariani V.
AU - Coelho L.
PY - 2014
SP - 223
EP - 227
DO - 10.5220/0005074502230227