Why Using the Alpha-stable Distribution in Neuroimage?

Diego Salas-Gonzalez, Juan M. Górriz, Javier Ramírez, Elmar W. Lang

Abstract

The main goal and overall objective of this contribution is to attract the attention of the potentialities and wide range of applications of the a-stable distribution in biomedical applications, specifically in neuroimaging. The a-stable density is a heavy-tailed, non-symmetric distribution with similar desirable properties to the Gaussian. Indeed, the Gaussian distribution is a particular case of the a-stable family. The Gaussian distribution is used ubiquitously in brain image processing. For this reason, we believe that the a-stable density can be potentially used as an alternative to the Gaussian distribution in several biomedical applications regarding brain imaging. Some of the proposed applications of the alpha-stable distribution considered in this work are the development of brain image processing approaches with applications to intensity normalization of SPECT images, MRI segmentation and feature extraction for the diagnosis of Parkinsonian’s syndrome.

References

  1. Aarts, E., Helmich, R. C., Janssen, M. J., Oyen, W. J., Bloem, B. R., and Cools, R. (2012). Aberrant reward processing in Parkinsons disease is associated with dopamine cell loss. Neuroimage, 59(4):3339- 3346.
  2. Balafar, M., Ramli, A., Saripan, M., and Mashohor, S. (2010). Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33(3):261- 274.
  3. Bhidayasiri, R. (2006). How useful is (123i) beta-CIT SPECT in the diagnosis of Parkinson's disease? Reviews in Neurological Diseases, 3(1):19-22.
  4. Hauser, R. A. and Grosset, D. G. (2012). [123I]FP-CIT (DaTSCAN) SPECT brain imaging in patients with suspected Parkinsonian syndromes. Journal of Neuroimaging, 22(3):225-230.
  5. Mandelbrot, B. (1963). Summary of variation of certain speculative prices. Journal of Business, pages 394- 419.
  6. Papathanasiou, N., Rondogianni, P., Chroni, P., Themistocleous, M., Boviatsis, E., Pedeli, X., Sakas, D., and Datseris, I. (2006). Interobserver variability, and visual and quantitative parameters of 123I-FPCIT SPECT (DaTSCAN) studies. Annals of Nuclear Medicine, 26(3):234-240.
  7. Salas-Gonzalez, D., Górriz, J., Ramírez, J., Schloegl, M., Lang, E., and Ortiz, A. (2013a). Parameterization of the distribution of white and grey matter in MRI using the a-stable distribution. Computers in Biology and Medicine, 43(5):559-567.
  8. Salas-Gonzalez, D., Górriz, J., Ramrez, J., Illán, I., and Lang, E. (2013b). Linear intensity normalization of FP-CIT SPECT brain images using the a-stable distribution. Neuroimage, 65:449-455.
  9. Samoradnitsky, G. and Taqqu, M. S. (1994). Stable NonGaussian Random Processes: Stochastic Models with Infinite Variance. Chapman and Hall/CRC.
  10. Scherfler, C., Seppi, K., Donnemiller, E., Goebel, G., Brenneis, C., Virgolini, I., Wenning, G. K., and Poewe, W. (2005). Voxel-wise analysis of [123I]beta-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson's disease. Brain, 128(7):1605-1612.
  11. Shao, M. and Nikias, C. L. (1993). Signal processing with fractional lower order moments: stable processes and their applications. Proceedings of the IEEE, 81(7):986-1010.
  12. Voit, J. (2003). The Statistical Mechanics of Financial Markets. Texts and Monographs in Physics. SpringerVerlag.
Download


Paper Citation


in Harvard Style

Salas-Gonzalez D., Górriz J., Ramírez J. and Lang E. (2014). Why Using the Alpha-stable Distribution in Neuroimage? . In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014) ISBN 978-989-758-046-8, pages 297-301. DOI: 10.5220/0005091102970301


in Bibtex Style

@conference{sigmap14,
author={Diego Salas-Gonzalez and Juan M. Górriz and Javier Ramírez and Elmar W. Lang},
title={Why Using the Alpha-stable Distribution in Neuroimage?},
booktitle={Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)},
year={2014},
pages={297-301},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005091102970301},
isbn={978-989-758-046-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)
TI - Why Using the Alpha-stable Distribution in Neuroimage?
SN - 978-989-758-046-8
AU - Salas-Gonzalez D.
AU - Górriz J.
AU - Ramírez J.
AU - Lang E.
PY - 2014
SP - 297
EP - 301
DO - 10.5220/0005091102970301