Two Swarm Intelligence Algorithms for the Set Covering Problem

Broderick Crawford, Ricardo Soto, Rodrigo Cuesta, Miguel Olivares-Suárez, Franklin Johnson, Eduardo Olguín

Abstract

The Weighted Set Covering problem is a formal model for many industrial optimization problems. In the Weighted Set Covering Problem the goal is to choose a subset of columns of minimal cost in order to cover every row. Here, we present its resolution with two novel metaheuristics: Firefly Algorithm and Artificial Bee Colony Algorithm. The Firefly Algorithm is inspired by the flashing behaviour of fireflies. The main purpose of flashing is to act as a signal to attract other fireflies. The flashing light can be formulated in such a way that it is associated with the objective function to be optimized. The Artificial Bee Colony Algorithm mimics the food foraging behaviour of honey bee colonies. In its basic version the algorithm performs a kind of neighbourhood search combined with random search. Experimental results show that both are competitive in terms of solution quality with other recent metaheuristic approaches.

References

  1. Akay, B. and Karaboga, D. (2009). Parameter tuning for the artificial bee colony algorithm. In Nguyen, N., Kowalczyk, R., and Chen, S.-M., editors, Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, volume 5796 of Lecture Notes in Computer Science, pages 608-619. Springer Berlin Heidelberg.
  2. Balachandar, S. R. and Kannan, K. (2010). A meta-heuristic algorithm for set covering problem based on gravity. 4(7):944-950.
  3. Balas, E. and Carrera, M. C. (1996). A dynamic subgradient-based branch-and-bound procedure for set covering. Operations Research, 44(6):875-890.
  4. Beasley, J. and Chu, P. (1996). A genetic algorithm for the set covering problem. European Journal of Operational Research, 94(2):392 - 404.
  5. Beasley, J. E. (1990). A lagrangian heuristic for setcovering problems. Naval Research Logistics (NRL), 37(1):151-164.
  6. Brusco, M., Jacobs, L., and Thompson, G. (1999a). A morphing procedure to supplement a simulated annealing heuristic for cost- and coverage-correlated setcovering problems. Annals of Operations Research, 86(0):611-627.
  7. Brusco, M. J., Jacobs, L. W., and Thompson, G. M. (1999b). A morphing procedure to supplement a simulated annealing heuristic for cost- and coverage-correlated setcovering problems. Annals of Operations Research, 86:611-627.
  8. Caprara, A., Fischetti, M., and Toth, P. (1999). A heuristic method for the set covering problem. Operations Research, 47(5):730-743.
  9. Caserta, M. (2007). Tabu search-based metaheuristic algorithm for large-scale set covering problems. In Doerner, K., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R., and Reimann, M., editors, Metaheuristics, volume 39 of Operations Research/Computer Science Interfaces Series, pages 43-63. Springer US.
  10. Ceria, S., Nobili, P., and Sassano, A. (1998). A lagrangianbased heuristic for large-scale set covering problems. Mathematical Programming, 81(2):215-228.
  11. Chvatal, V. (1979). A greedy heuristic for the setcovering problem. Mathematics of Operations Research, 4(3):233-235.
  12. Crawford, B., Castro, C., Monfroy, E., Soto, R., Palma, W., and Paredes, F. (2012). A hyperheuristic approach for guiding enumeration in constraint solving. In Proceedings of EVOLVE, volume 175 of Advances in Intelligent Systems and Computing, pages 171-188. Springer.
  13. Crawford, B., Lagos, C., Castro, C., and Paredes, F. (2007). A evolutionary approach to solve set covering. In Cardoso, J., Cordeiro, J., and Filipe, J., editors, ICEIS (2), pages 356-363.
  14. Crawford, B., Soto, R., and Monfroy, E. (2013a). Cultural algorithms for the set covering problem. In Tan, Y., Shi, Y., and Mo, H., editors, ICSI (2), volume 7929 of Lecture Notes in Computer Science, pages 27-34. Springer.
  15. Crawford, B., Soto, R., Monfroy, E., Castro, C., Palma, W., and Paredes, F. (2013b). A hybrid soft computing approach for subset problems. Mathematical Problems in Engineering., Article ID 716069:1-12.
  16. Crawford, B., Soto, R., Monfroy, E., Castro, C., Palma, W., and Paredes, F. (2013c). A hybrid soft computing approach for subset problems. Mathematical Problems in Engineering, 2013(Article ID 716069):1-12.
  17. Crawford, B., Soto, R., Monfroy, E., Palma, W., Castro, C., and Paredes, F. (2013d). Parameter tuning of a choice-function based hyperheuristic using particle Fister, I., Jr., I. F., Yang, X.-S., and Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13(0):34-46.
  18. Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability: A Guide to the Theory of NPCompleteness. W. H. Freeman & Co., New York, NY, USA.
  19. Glover, F. and Kochenberger, G. A. (2003). Handbook of metaheuristics. Springer.
  20. Horng, M.-H. (2012). Vector quantization using the firefly algorithm for image compression. Expert Syst. Appl., 39(1):1078-1091.
  21. Housos, E. and Elmroth, T. (1997). Automatic optimization of subproblems in scheduling airline crews. Interfaces, 27(5):68-77.
  22. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report TR06. Computer Engineering Department, Erciyes University, Turkey.
  23. Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optimization, 39(3):459-471.
  24. Krieken, M. v., Fleuren, H., and Peeters, M. (2003). Problem reduction in set partitioning problems. Discussion Paper 2003-80, Tilburg University, Center for Economic Research.
  25. Miguel, L. F. F. and Fadel Miguel, L. F. (2012). Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst. Appl., 39(10):9458-9467.
  26. Mirjalili, S. and Lewis, A. (2013). S-shaped versus vshaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9(0):1 - 14.
  27. Monfroy, E., Castro, C., Crawford, B., Soto, R., Paredes, F., and Figueroa, C. (2013). A reactive and hybrid constraint solver. Journal of Experimental and Theoretical Artificial Intelligence, 25(1):1-22.
  28. Naji-Azimi, Z., Toth, P., and Galli, L. (2010). An electromagnetism metaheuristic for the unicost set covering problem. European Journal of Operational Research, 205(2):290-300.
  29. Ren, Z.-G., Feng, Z.-R., Ke, L.-J., and Zhang, Z.-J. (2010). New ideas for applying ant colony optimization to the set covering problem. Computers & Industrial Engineering, 58(4):774 - 784.
  30. Sayadi, M. K., Hafezalkotob, A., and Naini, S. G. J. (2013). Firefly-inspired algorithm for discrete optimization problems: An application to manufacturing cell formation. Journal of Manufacturing Systems, 32(1):78 - 84.
  31. Singh, A. (2009). An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Appl. Soft Comput., 9(2):625-631.
  32. Valenzuela, C., Crawford, B., Soto, R., Monfroy, E., and Paredes, F. (2012). A 2-level metaheuristic for the set covering problem. INT J COMPUT COMMUN, 7(2):377-387.
  33. Vasko, F. J. and Wilson, G. R. (1984). Using a facility location algorithm to solve large set covering problems. Operations Research Letters, 3(2):85-90.
  34. Vasko, F. J., Wolf, F. E., and Stott, K. L. (1987). Optimal selection of ingot sizes via set covering. Oper. Res., 35(3):346-353.
  35. Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Proceedings of the 5th International Conference on Stochastic Algorithms: Foundations and Applications, SAGA'09, pages 169-178, Berlin, Heidelberg. Springer-Verlag.
  36. Yang, X.-S. (2010). Nature-Inspired Metaheuristic Algorithms. Luniver Press.
  37. Yang, X.-S. and He, X. (2013). Firefly algorithm: Recent advances and applications. CoRR, abs/1308.3898.
  38. Zhang, Y., L., W., and Wang, S. (2011a). Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Progress In Electromagnetics Research, 116:65-79.
  39. Zhang, Y. and Wu, L. (2011). Optimal multi-level thresholding based on maximum tsallis entropy via an artificial bee colony approach. Entropy, 13(4):841-859.
  40. Zhang, Y. and Wu, L. (2012). Artificial bee colony for two dimensional protein folding. Advances in Electrical Engineering Systems, 1(1):19-23.
  41. Zhang, Y., Wu, L., Wang, S., and Huo, Y. (2011b). Chaotic artificial bee colony used for cluster analysis. In Chen, R., editor, Intelligent Computing and Information Science, volume 134 of Communications in Computer and Information Science, pages 205-211. Springer Berlin Heidelberg.
  42. Zhang, Y. D., Wu, L. N., and Wang, S. H. (2011c). Ucav path planning based on fscabc. Information-an International Interdisciplinary Journal, 14(3):687-692.
  43. 1+x2
  44. Table 3: Details of the test instances.
Download


Paper Citation


in Harvard Style

Crawford B., Soto R., Cuesta R., Olivares-Suárez M., Johnson F. and Olguín E. (2014). Two Swarm Intelligence Algorithms for the Set Covering Problem . In Proceedings of the 9th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2014) ISBN 978-989-758-036-9, pages 60-69. DOI: 10.5220/0005093500600069


in Bibtex Style

@conference{icsoft-ea14,
author={Broderick Crawford and Ricardo Soto and Rodrigo Cuesta and Miguel Olivares-Suárez and Franklin Johnson and Eduardo Olguín},
title={Two Swarm Intelligence Algorithms for the Set Covering Problem},
booktitle={Proceedings of the 9th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2014)},
year={2014},
pages={60-69},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005093500600069},
isbn={978-989-758-036-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2014)
TI - Two Swarm Intelligence Algorithms for the Set Covering Problem
SN - 978-989-758-036-9
AU - Crawford B.
AU - Soto R.
AU - Cuesta R.
AU - Olivares-Suárez M.
AU - Johnson F.
AU - Olguín E.
PY - 2014
SP - 60
EP - 69
DO - 10.5220/0005093500600069