Developing a Novel fMRI-Compatible Motion Tracking System for Haptic Motor Control Experiments

M. Rodríguez, A. Sylaidi, A. A. Faisal

Abstract

Human neuroimaging can play a key role in addressing open questions in motor neuroscience and embodied cognition by linking human movement experiments and motor psychophysics to the neural foundation of motor control. To this end we designed and built fMOVE, an fMRI-compatible motion tracking system that captures 3DOF goal-directed movements of human subjects within a neuroimaging scanner. fMOVE constitutes an ultra-low-cost technology, based on a zoom lens high-frame rate USB camera and, our adaptation library for camera-based motion tracking and experiment control. Our motion tracking algorithm tracks the position of markers attached to a hand-held object. The system enables to provide the scanned subjects a closed-loop real time visual feedback of their motion and control of complex, goal-oriented movements. The latter are instructed by simple speed-accuracy tasks or goal-oriented object manipulation. The system’s tracking precision was tested and found within its operational parameters comparable to the performance levels of a scientific grade electromagnetic motion tracking system. fMOVE thus offers a low-cost methodological platform to re-approach the objectives of motor neuroscience by enabling ecologically more valid motor tasks in neuroimaging studies.

References

  1. Abbott, W. W.; Faisal, A. A. (2012) Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces, Journal of Neural Engineering, 9 (4),046016
  2. Abbott, W. W.; Zucconi, A.; Faisal, A. A.; Large-field study of ultra low-cost, non-invasive task level bmi (2013) IEEE/EMBS Conf. Proc. on Neural Eng. (NER),723-726
  3. Brayanov, J. B., Press, D. Z., and Smith, M. A. (2012). Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations. Journal of Neuroscience.
  4. Faisal, A. A. , Selen, L. P. J. and Wolpert, D. M. (2008) Noise in the nervous system, Nature Reviews Neuroscience, 9 (4),292-303
  5. Faisal, A. A. , Stout, D., Apel, J. and Bradley, B. (2010) The manipulative complexity of Lower Paleolithic stone toolmaking,PloS one, 5(11): e13718,2010
  6. Fara, S.; Vikram, C. S. , Gavriel, C.; Faisal, A. A. Robust, ultra low-cost mmg system with brain-machineinterface applications (2013) IEEE/EMBS Conf. Proc. on Neural Eng. (NER),723-726
  7. Gavriel, C.; Faisal, A. A.; ",Wireless kinematic body sensor network for low-cost neurotechnology applications “in-the-wild” (2013) IEEE/EMBS Conf. Proc. on Neural Eng. (NER), 1279-1282
  8. Thomik, A. A. C.; Haber, D. ,Faisal, A. A. (2013); Realtime movement prediction for improved control of neuroprosthetic devices, IEEE/EMBS Conf. Proc. on Neural Eng. (NER), 625-628
  9. Hecht, E. E.; Gutman, D. A.; Khreisheh, N.; Taylor, S. V.; Kilner, J.; Faisal, A. A.; Bradley, B .A.; Chaminade, T.; Stout, D.; (2014) Acquisition of Paleolithic toolmaking abilities involves structural remodeling to inferior frontoparietal regions, Brain Structure and Function 1863-2653, 1-17
  10. Haber, D.; Thomik, A. A. C.; Faisal, A. A. (2014). Unsupervised time series segmentation for highdimensional body sensor network data streams, IEEE Conf Wearable and Implant. Body Sensor Networks (BSN),121-126,
  11. Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience, 11(2), 127-138.
  12. Friston, K. J., Daunizeau, J., and Kiebel, S. J. (2009). Reinforcement learning or active inference? PLoS ONE, 4. doi:10.1371/journal.pone.0006421
  13. Ingram, J., Körding, K. P. , Howard, I. S. and Wolpert, D. M. (2008) The statistics of natural hand movements, Experimental Brain Research 188 (2), 223-236
  14. Kato, H. and Billinghurst, M., 1999. Marker Tracking and HMD Calibration for a Video-based Augmented Reality Conferencing System. In Augmented Reality, 1999.(IWAR'99) Proceedings. 2nd IEEE and ACM International Workshop on, pp. 85-94.
  15. Shadmehr, R., and Moussavi, Z. M. (2000). Spatial generalization from learning dynamics of reaching movements. The Journal of neuroscience?: the official journal of the Society for Neuroscience (Vol. 20, pp. 7807-7815). doi:20/20/7807 (pii)
  16. Shadmehr, R., and Mussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics during learning of a motor task. The Journal of Neuroscience?: The Official Journal of the Society for Neuroscience, 14, 3208- 3224. doi:8182467
  17. Syladi A., Faisal A.A. (2012). What is the hierarchical representation of tasks involving objects with complex internal dynamics? Frontiers in Computational Neuroscience.doi:10.3389/conf.fncom .2012.55.00129
  18. Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7, 907-915. doi:10. 1038/nn1309
  19. Todorov, E., and Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5, 1226-1235. doi:10.1038/nn963
  20. Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews. Neuroscience, 12(12), 739-51. doi:10.1038/ nrn3112
  21. Wolpert, D. M. and Flanagan, J. R., 2010. Motor learning. Curr Biol, pp. 467-472.
Download


Paper Citation


in Harvard Style

Rodríguez M., Sylaidi A. and Faisal A. (2014). Developing a Novel fMRI-Compatible Motion Tracking System for Haptic Motor Control Experiments . In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX, ISBN 978-989-758-056-7, pages 25-30. DOI: 10.5220/0005094700250030


in Bibtex Style

@conference{neurotechnix14,
author={M. Rodríguez and A. Sylaidi and A. A. Faisal},
title={Developing a Novel fMRI-Compatible Motion Tracking System for Haptic Motor Control Experiments},
booktitle={Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,},
year={2014},
pages={25-30},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005094700250030},
isbn={978-989-758-056-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,
TI - Developing a Novel fMRI-Compatible Motion Tracking System for Haptic Motor Control Experiments
SN - 978-989-758-056-7
AU - Rodríguez M.
AU - Sylaidi A.
AU - Faisal A.
PY - 2014
SP - 25
EP - 30
DO - 10.5220/0005094700250030