A Simulation Framework for Analyzing Complex Infinitely Repeated Games

Matthias Feldotto, Alexander Skopalik

Abstract

We discuss a technique to analyze complex infinitely repeated games using techniques from the fields of game theory and simulations. Our research is motivated by the analysis of electronic markets with thousands of participants and possibly complex strategic behavior. We consider an example of a global market of composed IT services to demonstrate the use of our simulation technique. We present our current work in this area and we want to discuss further approaches for the future.

References

  1. Aumann, R. J. (1959). Acceptable Points in General Cooperative n-Person Games. Contributions to the Theory of Games, 4:287-324.
  2. Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.
  3. Chen, X., Deng, X., and Teng, S.-H. (2009). Settling the Complexity of Computing Two-player Nash Equilibria. J. ACM, 56(3):14:1-14:57.
  4. Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H. (2009). The Complexity of Computing a Nash Equilibrium. SIAM J. Comput., 39(1):195-259.
  5. Happe, M., Kling, P., Plessl, C., Platzner, M., and Meyer auf der Heide, F. (2013). On-The-Fly Computing: A Novel Paradigm for Individualized IT Services. In Proceedings of the 9th IEEE Workshop on Software Technology for Future embedded and Ubiquitous Systems (SEUS). IEEE Computer Society.
  6. Hirshleifer, J. and Rubin, P. H. (1982). Evolutionary Models in Economics and Law. Jai Press.
  7. Hofbauer, J. and Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press.
  8. Izquierdo, S. S. and Izquierdo, L. R. (2006). On the Structural Robustness of Evolutionary Models of Cooperation. In Intelligent Data Engineering and Automated Learning-IDEAL 2006, pages 172-182. Springer.
  9. Luce, R. D. and Raiffa, H. (1957). Games and Decisions: Introduction and Critical Surveys. Wiley New York.
  10. Pence, C. H. and Buchak, L. (2012). Oyun: A New, Free Program for Iterated Prisoner's Dilemma Tournaments in the Classroom. Evolution: Education and Outreach, 5(3):467-476.
  11. Rubinstein, A. (1986). Finite Automata Play the Repeated Prisoner's Dilemma. Journal of Economic Theory, 39(1):83-96.
  12. Rubinstein, A. (1998). Modeling bounded rationality, volume 1. MIT press.
  13. Shapley, L. S. (1953). Stochastic Games. Proceedings of the National Academy of Sciences of the United States of America, 39(10):1095.
  14. Smith, J. M. and Price, G. (1973). The Logic of Animal Conflict. Nature, 246:15.
  15. Taylor, P. D. and Jonker, L. B. (1978). Evolutionary Stable Strategies and Game Dynamics. Mathematical Biosciences, 40(1):145-156.
  16. Williams, T. and Kelley, C. (2012). gnuplot 4.6: An Interactive Plotting Program. http://www.gnuplot.info.
Download


Paper Citation


in Harvard Style

Feldotto M. and Skopalik A. (2014). A Simulation Framework for Analyzing Complex Infinitely Repeated Games . In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-038-3, pages 625-630. DOI: 10.5220/0005110406250630


in Bibtex Style

@conference{simultech14,
author={Matthias Feldotto and Alexander Skopalik},
title={A Simulation Framework for Analyzing Complex Infinitely Repeated Games},
booktitle={Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2014},
pages={625-630},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005110406250630},
isbn={978-989-758-038-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - A Simulation Framework for Analyzing Complex Infinitely Repeated Games
SN - 978-989-758-038-3
AU - Feldotto M.
AU - Skopalik A.
PY - 2014
SP - 625
EP - 630
DO - 10.5220/0005110406250630