Adaptive Control of Position Compensation for Cable-Conduit Mechanisms Used in Flexible Surgical Robots

T. N. Do, T. Tjahjowidodo, M. W. S. Lau, S. J. Phee

Abstract

Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a method that allows for performing complex operations via natural orifices without skin incisions. Its main tool is a flexible endoscope. Cable-Conduit Mechanisms (CCMs) are often used in NOTES because of its simplicity, safety in design, and easy transmission. Backlash hysteresis nonlinearities between the cable and the conduit pose difficulties in the motion control of the NOTES system. It is challenging to achieve the precise position of robotic arms when the slave manipulator inside the humans body. This paper presents new approaches to model and control for pairs of CCMs. It is known that the change of cable-conduit configuration will affect the backlash hysteresis nonlinearities. To deal with such change, a new nonlinear and adaptive control scheme will be introduced. The backlash hysteresis parameters are online estimated under the assumption of availability of output feedback and unknown bound of nonlinear parameters. To validate the proposed approach, a prototype of single-DOF-Master-Slave system, which consists of a master console, a telesurgical workstation, and a slave manipulator, is also presented. The proposed compensation scheme is experimentally validated using the designed system. The results show that the proposed control scheme efficiently improves the tracking performances of the system regardless of the change of endoscope configuration.

References

  1. Abbott, D., Becke, C., Rothstein, R., and Peine, W. (2007). Design of an endoluminal notes robotic system. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS,, pages 410-416.
  2. Agrawal, V., Peine, W., Yao, B., and Choi, S. (2010a). Control of cable actuated devices using smooth backlash inverse. In IEEE International Conference on Robotics and Automation (ICRA), pages 1074-1079. Anchorage, AK.
  3. Agrawal, V., Peine, W. J., and Yao, B. (2010b). Modeling of transmission characteristics across a cable-conduit system. IEEE Transactions on Robotics, 26(5):914- 924.
  4. Bardou, B., Nageotte, F., Zanne, P., and De Mathelin, M. (2012). Improvements in the control of a flexible endoscopic system. In IEEE International Conference on Robotics and Automation (ICRA), pages 3725- 3732. Saint Paul, MN.
  5. Cai, J., Wen, C., Su, H., and Liu, Z. (2013). Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 58(9):2388-2394.
  6. Clark, M. P., Qayed, E. S., Kooby, D. A., Maithel, S. K., and Willingham, F. F. (2012). Natural orifice translumenal endoscopic surgery in humans: a review. Minimally invasive surgery, 2012.
  7. Do, T. N., Tjahjowidodo, T., Lau, M. W. S., and Phee, S. J. (2013a). Dynamic friction model for tendon-sheath actuated surgical robots: modelling and stability analysis. In ISRM 2013-Proceedings of the 3rd International Symposium on Robotics and Mechatronics, pages 302-311. Singapore.
  8. Do, T. N., Tjahjowidodo, T., Lau, M. W. S., and Phee, S. J. (2013b). Nonlinear modeling and parameter identification of dynamic friction model in tendon sheath for flexible endoscopic systems. In ICINCO 2013- Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics, pages 5-10. Reykjavik, Iceland.
  9. Do, T. N., Tjahjowidodo, T., Lau, M. W. S., and Phee, S. J. (2014a). Dynamic friction-based force feedback for tendon-sheath mechanism in notes system. International Journal of Computer and Electrical Engineering, 6(3):252-258.
  10. Do, T. N., Tjahjowidodo, T., Lau, M. W. S., and Phee, S. J. (2014b). An investigation of friction-based tendon sheath model appropriate for control purposes. Mechanical Systems and Signal Processing, 42(1-2):97- 114.
  11. Do, T. N., Tjahjowidodo, T., Lau, M. W. S., Yamamoto, T., and Phee, S. J. (2014c). Hysteresis modeling and position control of tendon-sheath mechanism in flexible endoscopic systems. Mechatronics, 24(1):12 - 22.
  12. Hassani, V., Tjahjowidodo, T., and Do, T. N. (2014). A survey on hysteresis modeling, identification and control. Mechanical Systems and Signal Processing, 49(1):209-233.
  13. Hu, C., Yao, B., and Wang, Q. (2013). Performanceoriented adaptive robust control of a class of nonlinear systems preceded by unknown dead zone with comparative experimental results. IEEE/ASME Transactions on Mechatronics, 18(1):178-189.
  14. Kaneko, M., Paetsch, W., and Tolle, H. (1992). Inputdependent stability of joint torque control of tendondriven robot hands. IEEE Transactions on Industrial Electronics, 39(2):96-104.
  15. Kesner, S. and Howe, R. (2011). Position control of motion compensation cardiac catheters. IEEE Transactions on Robotics, 27(6):1045-1055.
  16. Kesner, S. B. and Howe, R. D. (2014). Robotic catheter cardiac ablation combining ultrasound guidance and force control. The International Journal of Robotics Research, 33(4):631-644.
  17. Minh, T. V., Kamers, B., Tjahjowidodo, T., Ramon, H., and Van Brussel, H. (2010). Modeling torque-angle hysteresis in a pneumatic muscle manipulator. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pages 1122-1127.
  18. Ott, L., Nageotte, F., Zanne, P., and de Mathelin, M. (2011). Robotic assistance to flexible endoscopy by physiological-motion tracking. IEEE Transactions on Robotics, 27(2):346-359.
  19. Palli, G., Borghesan, G., and Melchiorri, C. (2012). Modeling, identification, and control of tendon-based actuation systems. IEEE Transactions on Robotics, 28(2):277-290.
  20. Phee, S. J., Low, S., Dario, P., and Menciassi, A. (2010). Tendon sheath analysis for estimation of distal end force and elongation for sensorless distal end. Robotica, 28(07):1073-1082.
  21. Rakotondrabe, M. (2011). Bouc-wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Transactions on Automation Science and Engineering, 8(2):428- 431.
  22. Reilink, R., Stramigioli, S., and Misra, S. (2013). Imagebased hysteresis reduction for the control of flexible endoscopic instruments. Mechatronics, 23(6):652- 658.
  23. Su, C.-Y., Stepanenko, Y., Svoboda, J., and Leung, T. (2000). Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Transactions on Automatic Control, 45(12):2427- 2432.
  24. Sun, Z., Wang, Z., and Phee, S. J. (2014). Elongation modeling and compensation for the flexible tendon-sheath system. IEEE/ASME Transactions on Mechatronics, 19(4):1243-1250.
  25. Tao, G. and Kokotovic, P. (1995). Adaptive control of system with unknown output backlash. IEEE Transactions on Automatic Control, 40(2):326-330.
  26. Vo-Minh, T., Tjahjowidodo, T., Ramon, H., and Van Brussel, H. (2011). A new approach to modeling hysteresis in a pneumatic artificial muscle using the maxwellslip model. IEEE/ASME Transactions on Mechatronics, 16(1):177-186.
  27. Zhang, Z., Xu, S., and Zhang, B. (2014). Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Transactions on Automatic Control, 59(5):1336-1341.
Download


Paper Citation


in Harvard Style

Do T., Tjahjowidodo T., Lau M. and Phee S. (2014). Adaptive Control of Position Compensation for Cable-Conduit Mechanisms Used in Flexible Surgical Robots . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 110-117. DOI: 10.5220/0005114701100117


in Bibtex Style

@conference{icinco14,
author={T. N. Do and T. Tjahjowidodo and M. W. S. Lau and S. J. Phee},
title={Adaptive Control of Position Compensation for Cable-Conduit Mechanisms Used in Flexible Surgical Robots},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={110-117},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005114701100117},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Adaptive Control of Position Compensation for Cable-Conduit Mechanisms Used in Flexible Surgical Robots
SN - 978-989-758-039-0
AU - Do T.
AU - Tjahjowidodo T.
AU - Lau M.
AU - Phee S.
PY - 2014
SP - 110
EP - 117
DO - 10.5220/0005114701100117