Ocean Remote Sensing Data Predicts Trajectory of Oil Spill - An Analytical Model for SAR Polarimetric Scattering Matrix

Bo wang, Bertrand Chapron, Rene Garello

Abstract

The ocean surface is part of the upper ocean which directly interacts with the overlying atmosphere and sea ice. Once oil spill happened due to an accident such as the oil rig pipe leaking and exploring, it would be unimaginable disaster to the oceanic environment, especially in the coastal area. If we can predict the direction along which the oil films floats over the marginal sea surface, the damage would be controlled within a pre-knowledge level. Under these knowledge, we analysed the polarimetric SAR (Synthetic Aperture Radar) data with an analytical model to separate backscattered contributions by different sea surface scatterers. Furthermore, it provides a possible prediction of the local wind direction by using the separated backscattered signal. With this direction, it is ready to predict the direction of oil film’s floating.

References

  1. García-Pintado, J., Neal, J. C., Mason, D. C., Dance, S. L., Bates, P. D., Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling, Journal of Hydrology 495 (2013) 252-266.
  2. Geer, A. J., Lahoz, W. A., Bekki, S., Bormann, N., Errera, Q., Eskes, H. J., Fonteyn, D., Jackson, D. R., Juckes, M. N., Massart, S., Peuch, V. H., Rharmili, S., Segers, A., The ASSET intercomparison of ozone analyses: method and first results, Atmos. Chem. Phys., 6, 5445- 5474, 2006.
  3. Lahoz, W., Geer, A., Bekki, S., Bormann, N., Errera, Q., Eskes, H. J., Fonteyn, D., Jackson, D. R., Juckes, M. N., Massart, S., Peuch, V. H., Rharmili, S., Segers, A., Evaluation of MIPAS and SCIAMACHY data using data assimilation, In Proceedings of the Third Workshop on the Atmospheric Chemistry Validation of Envisat (ACVE-3), 4-7 December 2006, ESA SP-642, February 2007.
  4. Ohring, G., Weng, F., Errico, R., Mahfouf, J. Turk, J., Bauer, P., Campana, K, Ferrier, B., Assimilation of satellite cloud and precipitation observations in NWP models: Report of a workshop, In Proceedings of ITSC-14, Beijing, May 25-31, 2005.
  5. Gade, M., Hühnerfuss, H., Korenowski, G., 2006, Marine Surface Films, Springer-Verlag Berline Heidelberg, The Netherlands.
  6. Feng, H., Vandemark, D., Quilfen, Y., Chapron, B., Beckley, B., “Assessment of wind-forcing impact on a global wind-wave model using the TOPEX altimeter”, Ocean Engineering, Vol. 33, Issues 11-12, August 2006, P. 1431-1461
  7. Giustarini, L., Matgen, P., Hostache, R., Montanari, M., Plaza, D., Pauwels, V. R. N., De Lannoy, G. J. M., De Keyser, R., Pfister, L., Hoffmann, L., Savenije, H. H. G., Assimilating SAR-derived water level data into a hydraulic model: a case study, Hydrol. Earth Syst. Sci. Discuss., 8, 2103-2144, 2011)
  8. Phan, X. V., Ferro-Famil, L., Gay, M., Durand, Y., Dumont, M., Morin, S., Allain, S., D'Urso, G., Girard, A., 3D-VAR multilayer assimilation of X-band SAR data into a detailed snowpack model, The Cryosphere Discuss., 7, 4881-4912, 2013
  9. De las Heras, M. M., Burgers, G., Janssen, P. A. E. M., Wave data assimilation in the WAM wave model, Journal of Marine Systems 6 (1995) 77-85
  10. Olsen, R. B., Dunlap, E. M., De Margerie, S., Wilson, L. J., Assimilation of SAR image spectra in a spectral ocean wave model, In Proceeding of Geoscience and Remote Sensing Symposium, 1995
  11. Hasselmann, S., Lionello, P., Hasselmann, K., An optimal interpolation scheme for the assimilation of spectral wave data, Journal of Geophysical Research, Vol. 102, No. C7, Pages 15823-15836, 1997
  12. Breivik, L. A., Reistad, M., Schyberg, H., Sunde, J., Krogstad, H. E., Johnsen, H., Assimilation of ERS SAR wave spectra in an operational wave model, Journal of Geophysical Research, Vol. 103, No. C4, Pages 7887-7900, 1998
  13. Quilfen, Y., Chapron, B., Bentamy, A., Gourrion, J., Elfouhaily, T., Vandemark, D., Global ERS 1 and 2 and NSCAT observations: Upwind / crosswind and upwind / downwind measurements, J. Geophys. Res., vol. 104, C5, no. 11,459-11,469, May 15, 1999.
  14. Wang, B., Chapron, B., Mouche, A., Mercier, G., Garello, R., He, M., Depolarization model - a polarimetry approach, presented at the CFOSAT meeting, 2011.
  15. Hasselmann, K., Hasselmann, S., On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion, J. Geophysical Research, vol. VOL. 96, No. C6, no. P.10713-10729, June 15, 1991.
  16. Elfouhaily, T., Chapron, B., Katsaros, K., Vandemark, D., A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res., vol. Vol. 1O2 (C7), no. P.15781-15796, July 15, 1997.
  17. Chen, G., Belcher, S. E., Effects of long waves on windgenerated waves, Journal of Physical Oceanography, Vol.30, September 2000.
  18. Plant, W. J., Bound waves and sea-surface slope, In Proceedings of OCEANS2003.San Diego, CA, USA, vol. Vol.4, no. 1825-1828, 22-26 Sept. 2003.
  19. Ardhuin, F., Herbers, T. H. C., Vledder, G. P., Watts, K. P., Jensen, R., Graber, H. C., Swell and slanting-fetch effects on wind wave growth, Journal of Physical Oceanography, Vol.37, no. pp.908-931, April 2007.
  20. Plant, W., Keller, W. C., Hayes, K., Chatham, G., Normalized radar cross section of the sea for backscatter: 1. mean levels, J. Geophys. Res., vol. 115, C09032, 2010.
  21. Cox, C. Measurements of slopes of high frequency waves, J. Mar. Res., vol. 16, no. 199-225, 1958.
  22. Boerner, W. M., Liu, C. L., Zhang, X., Comparison of optimization procedures for 2x2 sinclair, 2x2 graves, 3x3 covariance and 4x4 mueller (symmetric) matrices in coherent radar polarimetry and its application to target versus background discrimination in microwave remote sensing and imaging, International Journal of Advances in Remote Sensing (IJARS), Vol. 2, No.1-1, no. pp. 55-82, January 1993.
  23. Schuler, D. L., Lee, J. S., A microwave technique to improve the measurement of directional ocean wave spectra, Int. J. Remote Sensing, Vol. 16, No. 2, no. 199-215, 1995.
  24. Cloude, S. R., Pottier, E., A review of target decomposition theorems in radar polarimetry, IEEE Transacctions on Geoscience and Remote Sensing, VOL.34, NO. 2, MARCH 1996.
  25. Schuler, D. L., Lee, J. S., Kasilingam, D., Pottier, E., Measurement of ocean surface slopes and wave spectra using polarimetric sar image data, Remote Sensing of Environment, vol. 91, no. 198 - 211, 2004.
  26. Alpers, W., Monte carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra, J. Geophys. Res., vol. Vol. 88, NO. C3, no. p.1745-1759, February 28, 1983.
  27. Wang, B., Synthetic aperture radar multi-polarization ocean surface characteristics and ship detection, Ph.D. dissertation, Télécom Bretagne, Brest, December 2013.
Download


Paper Citation


in Harvard Style

wang B., Chapron B. and Garello R. (2014). Ocean Remote Sensing Data Predicts Trajectory of Oil Spill - An Analytical Model for SAR Polarimetric Scattering Matrix . In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: MSCCEC, (SIMULTECH 2014) ISBN 978-989-758-038-3, pages 822-827. DOI: 10.5220/0005125308220827


in Bibtex Style

@conference{msccec14,
author={Bo wang and Bertrand Chapron and Rene Garello},
title={Ocean Remote Sensing Data Predicts Trajectory of Oil Spill - An Analytical Model for SAR Polarimetric Scattering Matrix},
booktitle={Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: MSCCEC, (SIMULTECH 2014)},
year={2014},
pages={822-827},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005125308220827},
isbn={978-989-758-038-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: MSCCEC, (SIMULTECH 2014)
TI - Ocean Remote Sensing Data Predicts Trajectory of Oil Spill - An Analytical Model for SAR Polarimetric Scattering Matrix
SN - 978-989-758-038-3
AU - wang B.
AU - Chapron B.
AU - Garello R.
PY - 2014
SP - 822
EP - 827
DO - 10.5220/0005125308220827