Fuzzy Rule Based Quality Measures for Adaptive Multimodal Biometric Fusion at Operation Time

Madeena Sultana, Marina Gavrilova, Svetlana Yanushkevich

Abstract

Sample quality variation at operation time is one of the major concerns of real time biometric authentication and surveillance systems. Quality deviations of samples affect the performance of many benchmark biometric trait recognition systems. Moreover, large variation between enrolled and probe samples is very uncertain since it may arise at operation time for various reasons. In this paper, a novel adaptive multimodal biometric system is presented that can adapt the uncertainty of the quality degradation during operation. Fuzzy rule based method is applied for the first time to calculate the quality score of template-probe pairs dynamically. Feature extraction is accomplished using a novel shift invariant multi-resolution fusion approach. Finally, face and ear modalities are fused adaptively at rank level based on the quality scores. Proposed method relies more on good quality samples and disregards misclassification of poor quality samples. Experimental results demonstrate significant performance improvement of the proposed adaptive multimodal approach over baseline i.e. non-adaptive method.

References

  1. Abaza, A., Ross, A., 2009. Quality based rank-level fusion in multibiometric systems. BTAS, 1-6.
  2. Bhanu, B., V. Govindaraju, V. (Eds), 2011. Multibiometrics for Human Identification. Cambridge University Press.
  3. Dong, W., Sun, Z., Tan, T., Wei, Z., 2009. Quality-based dynamic threshold for iris matching. ICIP, 1949-1952.
  4. Fernandez, F. A., Fierrez, J., Ramos, D., Rodriguez, J. G., 2010. Quality-based conditional processing in multibiometrics: application to sensor interoperability. IEEE SMCA, 40(6), 1168-1179.
  5. Gavrilova, M. L., Monwar, M., 2013. Multimodal biometrics and intelligent image processing for security systems. IGI Global.
  6. Jain, A. K., Kumar, A., 2012. Biometric recognition: An overview. Second Generation Biometrics: The Ethical, Legal and Social Context, 49-79. Springer.
  7. Kingsbury, N. G., 1998. The dual-tree complex wavelet transform: a new efficient tool for image restoration and enhancement. EUSIPCO, 98, 319-322.
  8. Kumar, A., Wu, C., 2012. Automated human identification using ear imaging. Pattern Recognit., 45(3), 956-968.
  9. Marciniak, T., Chmielewska, A. Weychan, R., Parzych, M., Dabrowski, A., 2013. Influence of low resolution of images on reliability of face detection and recognition. Multimedia Tools and Applications, 1-21.
  10. Monwar, Md. M., Gavrilova, M. L., 2009. Multimodal biometric system using rank-level fusion approach. IEEE Trans. SMCB, 39(4), 867-878.
  11. Nandakumar, K., Chen, Y., Jain, A. K., Dass, S. C., 2006. Quality-based score level fusion in multibiometric systems. ICPR, 4, 473-476.
  12. Phillips, P. J., Moon, H., Rauss, P. J., Rizvi, S., 2000. The FERET evaluation methodology for face recognition algorithms. IEEE TPAMI, 22(10), 1090-1104.
  13. Poh, N., Kittler, J., 2010. A unified framework for biometric expert fusion incorporating quality measures. IEEE TPAMI, 34(1), 3-18.
  14. Poh, N., Rattani, A., Roli, F., 2012. Critical analysis of adaptive biometric systems. Biometrics, IET, 1(4), 179-187.
  15. Ross, A., Nandakumar, K., Jain, A. K., 2006. Handbook of Multibiometrics, New York: Springer-Verlag.
  16. Sellahewa, H, Jassim, S. A., 2010. Image-quality-based adaptive face recognition. IEEE TIM, 59(4), 805-813.
  17. Sultana, M., Gavrilova, M., 2013. A content based feature combination method for face recognition. CORES, 197-206.
  18. Sultana, M., Gavrilova, M., Yanushkevich, S., 2014. Expression, pose, and illumination invariant face recognition using lower order pseudo Zernike moments, VISAPP, 1, 216-221.
  19. USTB Ear Database, available at http://www.ustb.edu.cn/ resb/ Accessed on August 13, 2014.
  20. Wang, Z., Bovik, A. C., 2002. A universal image quality index. IEEE Signal Processing Letter, 9(3), 81-84.
  21. Yampolskiy, R., Gavrilova, M., 2012. Artimetrics: Biometrics for artificial entities. IEEE Robot. Autom. Mag., 19(4), 48-58.
Download


Paper Citation


in Harvard Style

Sultana M., Gavrilova M. and Yanushkevich S. (2014). Fuzzy Rule Based Quality Measures for Adaptive Multimodal Biometric Fusion at Operation Time . In Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014) ISBN 978-989-758-053-6, pages 146-152. DOI: 10.5220/0005126301460152


in Bibtex Style

@conference{fcta14,
author={Madeena Sultana and Marina Gavrilova and Svetlana Yanushkevich},
title={Fuzzy Rule Based Quality Measures for Adaptive Multimodal Biometric Fusion at Operation Time},
booktitle={Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)},
year={2014},
pages={146-152},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005126301460152},
isbn={978-989-758-053-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)
TI - Fuzzy Rule Based Quality Measures for Adaptive Multimodal Biometric Fusion at Operation Time
SN - 978-989-758-053-6
AU - Sultana M.
AU - Gavrilova M.
AU - Yanushkevich S.
PY - 2014
SP - 146
EP - 152
DO - 10.5220/0005126301460152