Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna

Adrian Bekasiewicz, Slawomir Koziel, Leifur Leifsson

Abstract

In this paper, computationally efficient multi-objective optimization of antenna structures is discussed. As a design case, we consider a multi-parameter planar Yagi-Uda antenna structure, featuring a driven element, three directors, and a feeding structure. Direct optimization of the high-fidelity electromagnetic (EM) antenna model is prohibitive in computational terms. Instead, our design methodology exploits response surface approximation (RSA) models constructed from sampled coarse-discretization EM simulation data. The RSA model is utilized to determine the Pareto optimal set of the best possible trade-offs between conflicting objectives. In order to alleviate the difficulties related to a large number of designable parameters, the RSA model is constructed in the initially reduced design space, where the lower/upper parameter bounds are estimated by solving appropriate single-objective problems resulting in identifying the extreme point of the Pareto set. The main optimization engine is multi-objective evolutionary algorithm (MOEA). Selected designs are subsequently refined using space mapping technique to obtain the final representation of the Pareto front at the high-fidelity EM antenna model level. The total design cost corresponds to less than two hundred of EM antenna imulations.

References

  1. Afshinmanesh, F., Marandi, A., Shahabadi, M. 2008. Design of a Single-Feed Dual-Band Dual-Polarized Printed Microstrip Antenna Using a Boolean Particle Swarm Optimization. In IEEE Transactions on Antennas and Propagation, 56, 1845-1852.
  2. Balanis, C.A. 2005. Antenna theory: analysis and design. John Wiley & Sons, 3rd edition.
  3. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., S√łndergaard, J. 2004. Space mapping: the state of the art. In IEEE Transactions on Microwave Theory and Techniques, 52, 337-361.
  4. Beachkofski, B., Grandhi, R. 2002 Improved distributed hypercube sampling. In American Institute of Aeronautics and Astronautics, paper AIAA 2002- 1274.
  5. Bekasiewicz, A., Koziel, S., Leifsson, L. 2014. Low-cost EM-simulation-driven multi-fidelity optimization of antennas. In International Conference on Computational Science - Procedia Computer Science, 29, 769-778.
  6. Bekasiewicz, A., Koziel, S., Zieniutycz, W. 2014. Design Space Reduction for Expedited Multi-Objective Design Optimization of Antennas in HighlyDimensional Spaces. In Solving Computationally Extensive Engineering Problems: Methods and Applications.
  7. Bekasiewicz, A., Koziel, S., Ogurtsov, S., Zieniutycz, W. 2014. Design of Microstrip Antenna Subarrays: A Simulation-Driven Surrogate-Based Approach. In International Conference on Microwave Radar and Wireless Communications, 1, 177-180.
  8. Chamaani, S., Mirtaheri, S.A., Abrishamian, M.S. 2011. Improvement of Time and Frequency Domain Performance of Antipodal Vivaldi Antenna Using Multi-Objective Particle Swarm Optimization. In IEEE Transactions on Antennas and Propagation, 59, 1738-1742.
  9. Conn, A.R., Scheinberg, K., Vicente, L.N. 2009. Introduction to Derivative-Free Optimization. In MPSSIAM Series on Optimization, MPS-SIAM.
  10. CST Microwave Studio 2013. Computer Simulation Technology AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.
  11. Deb., K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons. New York.
  12. Ding, D., Wang, G. 2013. Modified Multiobjective Evolutionary Algorithm Based on Decomposition for Antenna Design. In IEEE Transactions on Antennas and Propagation, 61, 5301-5307.
  13. Jin, N. Rahmat-Samii, Y., 2007. Advances in Particle Swarm Optimization for Antenna Designs: RealNumber, Binary, Single-Objective and Multiobjective Implementations. In IEEE Transactions on Antennas and Propagation, 55, 556-567.
  14. Jin, N., Rahmat-Samii, Y. 2010. Hybrid Real-Binary Particle Swarm Optimization (HPSO) in Engineering Electromagnetics. In IEEE Transactions on Antennas and Propagation, 58, 3786-3794.
  15. Junwei L., Ireland, D., Lewis, A. 2009 Multi-Objective Optimization in High Frequency ElectromagneticsAn Effective Technique for Smart Mobile Terminal Antenna (SMTA) Design. In IEEE Transactions on Magnetics, 45, 1072-1075.
  16. Kolundzija, B.M., Olcan, D.I. 2006. Multiminima heuristic methods for antenna optimization. In IEEE Transactions on Antennas and Propagation, 54, 1405-1415.
  17. Koulouridis, S., Psychoudakis, D., Volakis, J. 2007. Multiobjective Optimal Antenna Design Based on Volumetric Material Optimization. In IEEE Transactions on Antennas and Propagation, 55, 594- 603.
  18. Koziel, S., Cheng, Q.S., Bandler, J.W. 2008. Space mapping. In IEEE Microwave Magazine, 9, 105-122.
  19. Koziel, S., Bandler, J.W. 2012. Accurate modeling of microwave devices using kriging-corrected space mapping surrogates. In International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 25, 1-14.
  20. Koziel, S., Ogurtsov, S. 2013. Multi-Objective Design of Antennas Using Variable-Fidelity Simulations and Surrogate Models. In IEEE Transactions on Antennas and Propagation, 61, 5931-5939.
  21. Koziel, S., Leifsson, L., Ogurtsov, S. 2013. Reliable EMdriven microwave design optimization using manifold mapping and adjoint sensitivity. In Microwave and Optical Technology Letters, 55, 809-813.
  22. Koziel, S., Ogurtsov, S., Couckuyt, I., and Dhaene, T. 2013. Variable-Fidelity Elec-tromagnetic Simulations and Co-Kriging for AccurateModeling of Antennas. In IEEE Transactions on Antennas and Propagation, 61, 1301-1308.
  23. Koziel, S., Bekasiewicz, A., Zieniutycz, W. 2014 Expedite EM-Driven Multi-Objective Antenna Design in Highly-Dimensional Parameter Spaces. In IEEE Antennas and Wireless Propagation Letters, 13, 631- 634.
  24. Kuwahara, Y. 2005. Multiobjective optimization design of Yagi-Uda antenna. In IEEE Transactions on Antennas and Propagation, 53, 1984-1992.
  25. Nocedal, J., Wright, S. 2006. Numerical optimization, Springer, 2nd edition.
  26. Lophaven, S.N., Nielsen, H.B., S√łndergaard, J. 2002 DACE: a Matlab kriging toolbox, Technical University of Denmark.
  27. Qian, Y., Deal, W.R., Kaneda, N., Itoh, T. 1998. Microstrip-fed quasi-Yagi antenna with broadband characteristics. In Electronics Letters, 34, 2194- 2196.
  28. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K. 2005 Surrogate-based analysis and optimization. In Progress in Aerospace Sciences, 41, 1-28.
  29. Sharaqa, A., Dib, N. 2013. Position-only side lobe reduction of a uniformly excited elliptical antenna array using evolutionary algorithms. In IET Microwaves, Antennas & Propagation, 7, 452-457.
  30. Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K. 2001. Metamodels for computer-based engineering design: survey and recommendations. In Engineering with Computers, 17, 129-150.
  31. Talbi, E.-G. 2009. Metaheuristics - From Design to Implementation. John Wiley & Sons.
  32. Yang, X.-S., Ng, K.-T. Yeung, S.H., Man, K.F. 2008. Jumping Genes Multiobjective Optimization Scheme for Planar Monopole Ultrawideband Antenna. In IEEE Transactions on Antennas and Propagation, 56, 3659-3666.
Download


Paper Citation


in Harvard Style

Bekasiewicz A., Koziel S. and Leifsson L. (2014). Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna . In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2014) ISBN 978-989-758-038-3, pages 798-805. DOI: 10.5220/0005136607980805


in Bibtex Style

@conference{sddom14,
author={Adrian Bekasiewicz and Slawomir Koziel and Leifur Leifsson},
title={Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna},
booktitle={Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2014)},
year={2014},
pages={798-805},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005136607980805},
isbn={978-989-758-038-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2014)
TI - Computationally Efficient Multi-Objective Optimization of and Experimental Validation of Yagi-Uda Antenna
SN - 978-989-758-038-3
AU - Bekasiewicz A.
AU - Koziel S.
AU - Leifsson L.
PY - 2014
SP - 798
EP - 805
DO - 10.5220/0005136607980805