A Sharp Fitness Function for the Problem of Finding Roots of Polynomial Equations Systems

Cruz E. Borges, José L. Montaña, Luis M. Pardo

Abstract

We experiment with several evolutionary algorithms for solving systems of polynomial equations with real coefficients. As a main difference with previous work, our algorithms can certify the correctness of the solutions they provide. This achievement is made possible by incorporating results from the field of numerical analysis to their fitness functions. We have performed an experimental comparison between the various proposed algorithms. The results of this comparison show that evolutionary and other local search algorithms can deal with the problem of solving systems of polynomial equations even for systems having many variables and high degree. Our main contribution is a nontrivial fitness function adjusted to the problem to be solved. This function is not based on any heuristics but on the fundamentals of numerical computation.

References

  1. Alonso, C., Montan˜a, J., Puente, J., and Borges, C. (2009). A New Linear Genetic Programming Aproach Based on Straight Line Programs: Some Theoretical and Exeperimental Aspects. International Journal on Artificial Intelligence Tools, 18(5):757-781.
  2. Becker, T. and Weispfenning, V. (1993). Gröbner Bases, Graduate Texts in Mathematics. Springer-Verlag, New York.
  3. Beltrán, C. and Pardo, L. (2009). On Smale's 17 Problem: Average Polynomial Solver for Affine and Proyective Solutions. J.Amer. Math. Soc., 22:363-385.
  4. Beltrán, C. and Pardo, L. (2011). Fast linear homotopy to find approximate zeros of polynomial systems. Found. Comput. Math., 11(1):95-129.
  5. Benedetti, A., Farina, M., and Gobbi, M. (2006). Evolutionary multiobjective industrial design: the case of a racing car tire-suspension system. IEEE Trans. Evolutionary Computation, 10(3):230-244.
  6. Blum, L., Cucker, F., Shub, M., and Smale, S. (1998). Complexity and Real Computation. Springer-Verlag, New York.
  7. Borges, C. and Pardo, L. (2008). On the Probability Distribution of Data at Points in Real Complete Intersection Varieties. Journal of Complexity, 24(4):492-523.
  8. Castro, D., Giusti, M., Heintz, J., Matera, G., and Pardo, L. M. (2003). The hardness of polynomial equation solving. Foundations of Computational Mathematics, 3(4):347-420.
  9. Castro, D., Pardo, L., Hägele, K., and Morais, J. (2001). Kronecker's and newton's approaches to solving: A first comparison. J. Complexity, 17(1):212-303.
  10. Cox, D., Little, J., and O'Shea, D. (1997). Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, New York.
  11. Dedieu, J., Priouret, P., and Malajovich, G. (2003). Newton's method on riemannian manifolds: covariant alpha theory. IMA Journal of Numerical Analysis, 23(3):395-419.
  12. Dedieu, J.-P. and Kim, M.-H. (2002). Newton's method for analytic systems of equations with constant rank derivatives. Journal of Complexity, 18(1):187 - 209.
  13. Dieudonné, J. (1985). History of Algebraic Geometry: An Outline of the History and Development of Algebraic Geometry. Chapman & Hall.
  14. Durvye, C. and Lecerf, G. (2008). A concise proof of the Kronecker polynomial system solver from scratch. Expositiones Mathematicae, 26(2):101-139.
  15. Giusti, M., Heintz, J., Morais, J., Morgenstern, J., and Pardo, L. (1998). Straight-line programs in geometric elimination theory. Journal of Pure and Applied Algebra, 124(1-3):101-146.
  16. Giusti, M., Pardo, L., and Weispfenning, V. (2003). Algorithms of Commutative Algebra and Algebraic Geometry: Algorithms for Polynomial Ideals and Their Varieties, Handbook of Computer Algebra. Springer Verlag.
  17. Gradshte?in, I., Ryzhik, I., Jeffrey, A., and Zwillinger, D. (2007). Table of integrals, series and products. Academic Press. Academic.
  18. Grapsa, T. N. and Vrahatis, M. N. (2003). Dimension reducing methods for systems of nonlinear equations and unconstrained optimization: A review. A Review, Recent Adv. Mech. Related Fields, pages 215-225.
  19. Hentenryck, P. V., Mcallester, D., and Kapur, D. (1997). Solving polynomial systems using a branch and prune approach. SIAM Journal on Numerical Analysis, 34:797-827.
  20. K. Deb, K. Mitra, R. D. and Majumdar, S. (2004). Towards a better understanding of the epoxy-polymerization process using multi-objective evolutionary computation. Chem. Eng. Sci., 59(20):4261-4277.
  21. Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press.
  22. Kuri-Morales, A. (2003). Solution of simultaneous nonlinear equations using genetic algorithms. In WSEAS Transactions on SYSTEMS, Issue 1, vol. 2, pages 44- 51.
  23. Laarhoven, P. and Aarts, E., editors (1987). Simulated annealing: theory and applications. Kluwer Academic Publishers, Norwell, MA, USA.
  24. Mastorakis, N. E. (2005). Solving non linear equations via genetic algorithms. In Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, pages 24-28.
  25. Michalewicz, Z., Logan, T., and Swaminathan, S. (1994). Evolutionary operators for continuous convex parameter spaces. In Proceedings of the 3rd Annual Conference on Evolutionary Programming, pages 84-97. World Scientic.
  26. Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation, 4:1-32.
  27. Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. App., 2008:1-10.
  28. Price, K., Storn, R., and Lampinen, J. (2005). Differential Evolution: A Practical Approach to Global Optimization. Springer, 1 edition.
  29. Tan, K. C., Yang, Y. J., and Goh, C. K. (2006). A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans. Evolutionary Computation, 10(5):527-549.
Download


Paper Citation


in Harvard Style

Borges C., Montaña J. and Pardo L. (2014). A Sharp Fitness Function for the Problem of Finding Roots of Polynomial Equations Systems . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 294-301. DOI: 10.5220/0005140002940301


in Bibtex Style

@conference{ecta14,
author={Cruz E. Borges and José L. Montaña and Luis M. Pardo},
title={A Sharp Fitness Function for the Problem of Finding Roots of Polynomial Equations Systems},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},
year={2014},
pages={294-301},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005140002940301},
isbn={978-989-758-052-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - A Sharp Fitness Function for the Problem of Finding Roots of Polynomial Equations Systems
SN - 978-989-758-052-9
AU - Borges C.
AU - Montaña J.
AU - Pardo L.
PY - 2014
SP - 294
EP - 301
DO - 10.5220/0005140002940301