Using Fuzzy Cognitive Mapping and Nonlinear Hebbian Learning for Modeling, Simulation and Assessment of the Climate System, Based on a Planetary Boundaries Framework

Iván Paz-Ortiz, Carlos Gay-Garcia

Abstract

In the present work a fuzzy cognitive map for the qualitative assessment of the Earth climate system is developed by considering subsystems on which the climate equilibrium depends. The cognitive map was developed as a collective map by aggregating different experts opinions. The resulting network was characterized by graph indexes and used for simulation and analysis of hidden pattens and model sensitivity. Linguistic variables were used to fuzzify the edges and were aggregated to produce an overall linguistic weight for each edge. The resulting linguistic weights were defuzzified using the “Center of Gravity”, and the current state of the Earth climate system was simulated and discussed. Finally, a nonlinear Hebbian Learning algorithm was used for updating the edges of the map until a desired state. The overall results are discussed to explore possible policy implementation, environmental decision making and management.

References

  1. Eden, C. (1992). On the nature of cognitive maps. Journal of Management Studies vol. 29, pp. 261265.
  2. Eden, C., Ackermann F, & Cropper S (1992). On the nature of cognitive maps. The analysis of cause maps. Journal of Management Studies vol. 29, pp. 309-324.
  3. Foley, JA. (2010). Boundaries for a Healthy Planet. Scientific American, 5457.
  4. IPCC Intergovernamental Panel on Climate Change (2007). Cambio climtico 2007: Informe de sntesis. Contribucin de los Grupos de trabajo I, II y III al Cuarto
  5. Kosko, B. (1986). Fuzzy Cognitive Maps. Man-Machine Studies, 24, 65-75.
  6. Kosko, B. (1991). Neural Networks and Fuzzy Systems: a dynamical systems approach to machine intelligence. Prentice Hall.
  7. Mace, G., Masundire, H., Baillie, J., Ricketts, T., Brooks, T., (2005). Chapter 4: Biodiversity in “Ecosystems and human well-being: Current state and trends”, Island Press USA.
  8. Ozesmi, U. & S. L. Ozesmi, (2004). Ecological Models based on Peoples Knowledge: A Multi-Step Fuzzy Cognitive Mapping Approach. Ecological Modeling vol. 176,pp. 4364.
  9. Papageorgiou, E. & Stylios, C.D. (2008). Fuzzy Cognitive Maps, in book: Handbook of Granular Computing, editors: Witold Pedrycz, Andrzej Skowron and Vladik Kreinovich, Chapter 34, John Wiley & Sons, Ltd, pp. 755-775.
  10. Papageorgiou, E.I, Stylios, C.D, Groumpos, P.P. (2003). Fuzzy cognitive map learning based on nonlinear Hebbian rule, In: T.D. Gedeon and L.C.C. Fung (Eds.): AI 2003, LNAI vol. 2903, Springer-Verlag, 2003, pp. 254- 266.
  11. Papageorgiou, E.I, Stylios, C.D, Groumpos, P.P. (2006). Unsupervised learning techniques for fine-tuning fuzzy cognitive map casual links, International Journal of Human-Computer Studies, vol. 64, no. 8, 2006, pp. 727-743.
  12. Papakostas, G.A., Polydoros, A.S., tis, D.E. and Tourassis, V.D. (2011). ing Fuzzy Cognitive Maps by Using Learning Algorithms: A Comparative http://ieeexplore.ieee.org/xpl/articleDetails.jsp? reload=true&arnumber=6007544.
  13. Paz-Ortiz, A. (2011). Master degree Thesis. “Uso de mapas cognitivos para el estudio de la estabilidad en sistemas climáticos terrestres”. National Autonomous University of Mexico.
  14. Gay-García, C. and Paz-Ortiz, I. (2012). Stability Analysis of Climate System Using Fuzzy Cognitive Maps. Simulation and Modeling Methodologies, Technologies and Applications International Conference, SIMULTECH 2012 Rome, Italy, July 2831, 2012. Mohammad S. Obaidat Joaquim Filipe Janusz Kacprzyk Nuno Pina Editors.
  15. Rockström, J., Steffen, W., Noone, K., Persson, ., Chapin, FS., Lambin, EF., Lenton, TM., Scheffer, M., Folke, C., Schellnhuber, HJ., Nykvist, B., Wit, CA., Hughes, T., Van der Leeuw, S., Rodhe, H., Srlin, H., Snyder, PK., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, RW., Fabry, VJ., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., Foley, JA. (2009). A Safe Operating Space for Humanity. Nature, 461,472475.
  16. Stylios, C.D., Georgopoulos, V.C., & Groumpos, P.P. (1997). The use of fuzzy cognitive maps in modeling systems. 5th IEEE Mediterranean Conference on Control and Systems MED5 paper, 67, p.7.
  17. Soler, L., Kok, K., Camara, G. and Veldkamp, A. (2011). Using fuzzy cognitive maps to describe current system dynamics and develop land cover scenarios: a case study in the Brazilian Amazon. Journal of Land Use Science iFirst, 2011, 127.
  18. Vas?c?ák, J. (2012). http://neuron-ai.tuke.sk/vascak/ publications/p-11.pdf.
  19. Zadeh, J. (1986). http://www-bisc.cs.berkeley.edu/ zadeh/papers/1986-CWW.pdf.
Download


Paper Citation


in Harvard Style

Paz-Ortiz I. and Gay-Garcia C. (2014). Using Fuzzy Cognitive Mapping and Nonlinear Hebbian Learning for Modeling, Simulation and Assessment of the Climate System, Based on a Planetary Boundaries Framework . In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: MSCCEC, (SIMULTECH 2014) ISBN 978-989-758-038-3, pages 852-862. DOI: 10.5220/0005140608520862


in Bibtex Style

@conference{msccec14,
author={Iván Paz-Ortiz and Carlos Gay-Garcia},
title={Using Fuzzy Cognitive Mapping and Nonlinear Hebbian Learning for Modeling, Simulation and Assessment of the Climate System, Based on a Planetary Boundaries Framework},
booktitle={Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: MSCCEC, (SIMULTECH 2014)},
year={2014},
pages={852-862},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005140608520862},
isbn={978-989-758-038-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: MSCCEC, (SIMULTECH 2014)
TI - Using Fuzzy Cognitive Mapping and Nonlinear Hebbian Learning for Modeling, Simulation and Assessment of the Climate System, Based on a Planetary Boundaries Framework
SN - 978-989-758-038-3
AU - Paz-Ortiz I.
AU - Gay-Garcia C.
PY - 2014
SP - 852
EP - 862
DO - 10.5220/0005140608520862