A Clustering-based Approach for a Finest Biological Model Generation Describing Visitor Behaviours in a Cultural Heritage Scenario

Salvatore Cuomo, Pasquale De Michele, Giovanni Ponti, Maria Rosaria Posteraro

Abstract

We propose a biologically inspired mathematical model to simulate the personalized interactions of users with cultural heritage objects. The main idea is to measure the interests of a spectator w.r.t. an artwork by means of a model able to describe the behaviour dynamics. In this approach, the user is assimilated to a computational neuron, and its interests are deduced by counting potential spike trains, generated by external currents. The main novelty of our approach consists in resorting to clustering task to discover natural groups, which are used in the next step to verify the neuronal response and to tune the computational model. Preliminary experimental results, based on a phantom database and obtained from a real world scenario, are shown. To discuss the obtained results, we report a comparison between the cluster memberships and the spike generation; our approach resulted to perfectly model cluster assignment and spike emission.

References

  1. Albanese, M., d'Acierno, A., Moscato, V., Persia, F., Picariello, A.: A Multimedia Recommender System. ACM Trans. Internet Technol. (2013) 13(1) 3:1-3:32.
  2. Amato, F., Chianese, A., Mazzeo, A., Moscato, V., Picariello, A., Piccialli, F.: The Talking Museum Project. Procedia Computer Science. (2013) 21(0) 114-121.
  3. Bianchi, D., De Michele, P., Marchetti, C., Tirozzi, B., Cuomo, S., Marie, H., Migliore, M.: Effects of increasing CREB-dependent transcription on the storage and recall processes in a hippocampal CA1 microcircuit. HIPPOCAMPUS. 24(2) (2014) 165-177.
  4. Chianese, A., Marulli, F., Moscato, V., Piccialli, F.: SmARTweet: A location-based smart application for exhibits and museums. Proceedings - 2013 International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2013. (2013) 408-415.
  5. Chianese, A., Marulli, F., Piccialli, F., Valente, I.: A novel challenge into multimedia cultural heritage: An integrated approach to support cultural information enrichment. Proceedings - 2013 International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2013. (2013) 217-224.
  6. Cuomo, S., De Michele, P., Chinnici, M.: Parallel tools and techniques for biological cells modelling. Buletinul Institutului Politehnic DIN IASI, Automatic Control and Computer Science Section. LXI (2011) 61-75.
  7. Cuomo, S., De Michele, P., Piccialli, F.: A performance evaluation of a parallel biological network microcircuit in neuron. International Journal of Distributed & Parallel Systems. 4(1) (2013) 15-31.
  8. Cuomo, S., De Michele, P., Posteraro, M. (2014): A biologically inspired model for describing the user behaviors in a Cultural Heritage environment. SEBD2014, 22nd Italian Symposium on Advanced Database Systems, June 16th - June 18th 2014, Sorrento Coast.
  9. Domingos, P.: A Few Useful Things to Know About Machine Learning. Commun. ACM. 55(10) (2012) 78- 87.
  10. Hartigan, J. A.: Clustering Algorithms. Applied Statistics. John Wiley & Sons, 1975.
  11. Jain, A. K., and Dubes R. C.. Algorithms for Clustering Data. Prentice-Hall, 1988.
  12. Kaufman, L., and Rousseeuw, P. J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, 1990.
  13. Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. SIGIR Forum. 37(2) (2003) 18-28.
  14. Kleinberg, J.: The convergence of social and technological networks. Commun. ACM 51, 11, 2008 66-72.
  15. Kumar, R., Novak, J., Tomkins, A.: Structure and Evolution of Online Social Network. Link Mining: Models, Algorithms, and Applications J. Am. Soc. Inf. Sci. Technol. 978-1-4419-6515-8 (2010) 337-357.
  16. Middleton, S. E., Shadbolt, N. R., De Roure, D. C.: Capturing Interest Through Inference and Visualization: Ontological User Profiling in Recommender Systems. Proceedings of the 2Nd International Conference on Knowledge Capture. (2003) 1-58113-583-1 62-69.
  17. Pentland, A. S.: Automatic mapping and modeling of human networks. Physica A. (2007) 378(1) 59-67.
  18. Roderick J. A. Little, Donald B. Rubin : Statistical Analysis with Missing Data. Wiley Editor. 978-0-471-18386-0 (2002).
  19. Widyantoro, D. H., Ioerger, T. R., Yen, J.: Learning User Interest Dynamics with a Three-descriptor Representation. J. Am. Soc. Inf. Sci. Technol. 52(3) (2001) 212- 225.
Download


Paper Citation


in Harvard Style

Cuomo S., De Michele P., Ponti G. and Posteraro M. (2014). A Clustering-based Approach for a Finest Biological Model Generation Describing Visitor Behaviours in a Cultural Heritage Scenario . In Proceedings of 3rd International Conference on Data Management Technologies and Applications - Volume 1: KomIS, (DATA 2014) ISBN 978-989-758-035-2, pages 427-433. DOI: 10.5220/0005144104270433


in Bibtex Style

@conference{komis14,
author={Salvatore Cuomo and Pasquale De Michele and Giovanni Ponti and Maria Rosaria Posteraro},
title={A Clustering-based Approach for a Finest Biological Model Generation Describing Visitor Behaviours in a Cultural Heritage Scenario},
booktitle={Proceedings of 3rd International Conference on Data Management Technologies and Applications - Volume 1: KomIS, (DATA 2014)},
year={2014},
pages={427-433},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005144104270433},
isbn={978-989-758-035-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of 3rd International Conference on Data Management Technologies and Applications - Volume 1: KomIS, (DATA 2014)
TI - A Clustering-based Approach for a Finest Biological Model Generation Describing Visitor Behaviours in a Cultural Heritage Scenario
SN - 978-989-758-035-2
AU - Cuomo S.
AU - De Michele P.
AU - Ponti G.
AU - Posteraro M.
PY - 2014
SP - 427
EP - 433
DO - 10.5220/0005144104270433