Predicting Catheter Ablation Outcome in Persistent Atrial Fibrillation via Multivariate Analyses of ECG Fibrillatory Wave Amplitude

A. R. Hidalgo-Muñoz, V. Zarzoso, M. Meo, O. Meste, D. G. Latcu, I. Popescu, N. Saoudi

Abstract

Selecting the most suitable atrial fibrillation (AF) patients who can benefit from the catheter ablation (CA) therapy is a concern for cardiologists. Despite the improvement on CA techniques and the high rate of succesful procedures, objectively predicting its outcome is a challenging task. Some parameters computed from the ECG recordings can be used to classify the long-term AF manifestations that are more difficult to treat with CA. Usually, prediction models for CA outcome classification focus on only one lead (mainly V1). However, feature extraction methods can take advantage of the multiple ECG leads. This paper presents a combination of fibrillatory wave amplitude mean values measured in different ECG leads. We demonstrate that CA outcome prediction performance is enhanced if these variables are taken together. The improvement in terms of accuracy relative to single-lead prediction results reported in the literature is shown by applying two methodologies: logistic regression and support vector machines. Both algorithms point to I, V1, V2 and V5 as the most relevant ECG channels to predict CA outcome, reaching up to 82.3% accuracy.

References

  1. Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167.
  2. Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., et al. (2012). 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace, 14:528-606.
  3. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422.
  4. Indrayan, A. (2012). Medical Biostatistics. CRC Press.
  5. Jones, A. R., Krummen, D. E., and Narayan, S. M. (2013). Non-invasive identification of stable rotors and focal sources for human atrial fibrillation: mechanistic classification of atrial fibrillation from the electrocardiogram. Europace, 15(9):1249-1258.
  6. Matsuo, S., Lellouche, N., Wright, M., Bevilacqua, M., Knecht, S., et al. (2009). Clinical predictors of termination and clinical outcome of catheter ablation for persistent atrial fibrillation. Journal of the American College of Cardiology, 54(9):788-795.
  7. Meo, M., Zarzoso, V., Meste, O., Lactu, D. G., and Saoudi, N. (2013). Spatial variability of the 12-lead surface ECG as a tool for noninvasive prediction of catheter ablation outcome in persistent atrial fibrillation. IEEE Trans. on Biomedical Engineering, 60(1):20-27.
  8. Nault, I., Lellouche, N., Matsuo, S., Knecht, S., Wright, M., et al. (2009). Clinical value of fibrillatory wave amplitude on surface ECG in patients with persistent atrial fibrillation. Journal of Interventional Cardiac Electrophysiology, 26(1):11-19.
Download


Paper Citation


in Harvard Style

R. Hidalgo-Muñoz A., Zarzoso V., Meo M., Meste O., G. Latcu D., Popescu I. and Saoudi N. (2014). Predicting Catheter Ablation Outcome in Persistent Atrial Fibrillation via Multivariate Analyses of ECG Fibrillatory Wave Amplitude . In - CARDIOTECHNIX, ISBN , pages 0-0


in Bibtex Style

@conference{cardiotechnix14,
author={A. R. Hidalgo-Muñoz and V. Zarzoso and M. Meo and O. Meste and D. G. Latcu and I. Popescu and N. Saoudi},
title={Predicting Catheter Ablation Outcome in Persistent Atrial Fibrillation via Multivariate Analyses of ECG Fibrillatory Wave Amplitude},
booktitle={ - CARDIOTECHNIX,},
year={2014},
pages={},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - - CARDIOTECHNIX,
TI - Predicting Catheter Ablation Outcome in Persistent Atrial Fibrillation via Multivariate Analyses of ECG Fibrillatory Wave Amplitude
SN -
AU - R. Hidalgo-Muñoz A.
AU - Zarzoso V.
AU - Meo M.
AU - Meste O.
AU - G. Latcu D.
AU - Popescu I.
AU - Saoudi N.
PY - 2014
SP - 0
EP - 0
DO -