An Insect Inspired Object Tracking Mechanism for Autonomous Vehicles

Zahra Bagheri, Benjamin S. Cazzolato, Steven D. Wiederman, Steven Grainger, David C. O'Carroll

Abstract

Target tracking is a complicated task from an engineering perspective, especially where targets are seen against complex natural scenery. Due to the high demand for robust target tracking algorithms much research has focused in this area. However most engineering solutions developed for this purpose are either unreliable in real world conditions or too computationally expensive to be used in many real-time applications. Insects, such as the dragonfly, solve this task when chasing tiny prey, despite their low spatial resolution eye and small brain suggesting that nature has evolved an efficient solution for target detection and tracking problem. This project aims to develop a robust, closed-loop model inspired by the physiology of insect neurons that solves this problem, and to integrate this into an autonomous robot. This system is tested in software simulations using MATLAB/Simulink. In near future this system will be integrated with a robotic platform to examine its performance in real world environments to demonstrate the usefulness of this approach for applications such as wildlife monitoring.

References

  1. Bibby, C., & Reid, I., 2010. Real-time tracking of multiple occluding objects using level sets. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), , 1307-1314.
  2. Bibby, C., & Reid, I. 2008. Robust real-time visual tracking using pixel-wise posteriors. In Computer Vision-ECCV, Springer Berlin Heidelberg, 831-844.
  3. Birchfield, S.T., & Rangarajan, S., 2005. Spatiograms versus histograms for region-based tracking. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2: 1158-1163.
  4. Boykov, Y., & Huttenlocher, D.P., 2000. Adaptive Bayesian recognition in tracking rigid objects. In IEEE Conference on Computer Vision and Pattern Recognition, 2 : 697-704.
  5. Bradshaw, K.J., McLauchlan, P. F. Reid, I. D., & Murray, D.W., 1994. Saccade and pursuit on an active head/eye platform. Image and Vision Computing, 12(3): 155-163.
  6. Comaniciu, D., Ramesh, V., & Meer, P., 2000. Real-time tracking of non-rigid objects using mean shift. In IEEE Conference on Computer Vision and Pattern Recognition. Proceedings, 2: 142-149.
  7. Cannons, K., 2008. A review of visual tracking. Dept. Comput. Sci. Eng., York Univ., Toronto, Canada, Tech. Rep. CSE-2008-07.
  8. Cannons, K., & Wildes, R., 2007. Spatiotemporal oriented energy features for visual tracking. In Computer Vision-ACCV, Springer Berlin Heidelberg, 532-543.
  9. Collett, T. S., & Land, M. F., 1975. Visual control of flight behaviour in the hoverfly Syritta pipiens L. Journal of Comparative Physiology, 99(1): 1-66.
  10. Coombe, P.E., Srinivasan, M.V., & Guy, R.G., 1989. Are the large monopolar cells of the insect lamina on the optomotor pathway? Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 166(1): 23-35.
  11. Corbet, P.S., 1999. Dragonflies: Behavior & Ecology of Odonata, Ithaca, Cornell Univ Press.
  12. Dunbier, J.R., Wiederman, S.D., Shoemaker P.A. & O'Carroll, D.C., 2012. Facilitation of dragonfly targetdetecting neurons by slow moving features on continuous paths. Frontiers in Neural Circuits, 6(79).
  13. Dunbier, J.R., Wiederman, S.D., Shoemaker P.A., & O'Carroll, D.C., 2011. Modelling the temporal response properties of an insect small target motion detector, In IEEE 7th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 125-130.
  14. Gilbert, C., & Strausfeld, N.J., 1991. The functional organization of male-specific visual neurons in flies. Journal of Comparative Physiology A, 169(4): 395-411.
  15. Halupka, K.J., Wiederman, S.D., Cazzolato, B.S., & O'Carroll, D.C., 2011. Discrete implementation of biologically inspired image processing for target detection. In Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 143-148.
  16. Jonk, A., van de Boomgaard, R., & Smeulders, A.W., 2001. A line tracker. Internal ISIS report, Amsterdam University.
  17. Juusola, M., Kouvalainen, E., Järvilehto, M., & Weckström, M., 1994. Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors. The Journal of General Physiology, 104(3): 593-621.
  18. Kalal, Z., Mikolajczyk, K. & Matas, J., 2012. TrackingLearning-Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7): 1409-1422.
  19. Land, M. F., & Collett, T. S., 1974. Chasing behaviour of houseflies (Fannia canicularis). Journal of Comparative Physiology, 89(4): 331-357.
  20. Laughlin, S.B., 1994. Matching coding, circuits, cells, and molecules to signals: general principles of retinal design in the fly's eye. Progress in Retinal and Eye Research, 13(1): 165-196.
  21. Leng, J., & Wang, H., 2004. Tracking as recognition: a stable 3D tracking framework. In 8th IEEE Conference on Control, Automation, Robotics and Vision, 3: 2303-2307.
  22. Lepetit, V., Lagger, P., & Fua, P., 2005. Randomized trees for real-time keypoint recognition. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:775-781.
  23. Li, K., Miller, E.D., Weiss, L.E., Campbell, P.G., & Kanade, T., 2006. Online tracking of migrating and proliferating cells imaged with phase-contrast microscopy. In IEEE Conference on Computer Vision and Pattern Recognition Workshop, 65-65.
  24. Li, P., Zhang, T., & Pece, A.E., 2003. Visual contour tracking based on particle filters. Image and Vision Computing, 21(1): 111-123.
  25. Li, B., & Chellappa, R., 2000. Simultaneous tracking and verification via sequential posterior estimation. In Proceedings of IEEE Conference on Computer Vision and Pattern, 2: 110-117.
  26. Lu, N., Wang, J., Wu, Q.H., & Yang, L., 2008. An improved motion detection method for real-time surveillance. IAENG International Journal of Computer Science, 35(1): 1-10.
  27. Mansouri, A.R., 2002. Region tracking via level set PDEs without motion computation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 947-961.
  28. Mörwald, T., Zillich, M., & Vincze, M., 2009. Edge tracking of textured objects with a recursive particle filter. In Proceedings of the Graphicon.
  29. Nordström, K., Bolzon, D.M., & O'Carroll, D.C., 2011. Spatial facilitation by a high-performance dragonfly target-detecting neuron. Biology letters, 7(4): 588-592.
  30. O'Carroll, D., 1993. Feature-detecting Neurons in Dragonflies. Nature, 362: 541-543.
  31. Olberg, R.M., Worthington, A.H., & Venator, K.R., 2000. Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A, 186(2): 155-162.
  32. Paragios, N., & Deriche, R., 2000. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(3), 266-280.
  33. Piccardi, M. 2004. Background subtraction techniques: a review. In IEEE International Conference on Systems, Man and Cybernetics, 4: 3099-3104.
  34. Ren, Y., Chua, C.S., & Ho, Y.K., 2003. Motion detection with nonstationary background. Machine Vision and Applications, 13(5-6), 332:343.
  35. Rui, Y., & Chen, Y., 2001. Better proposal distributions: Object tracking using unscented particle filter. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2: 786-793.
  36. Shafique, K. & Shah, M., 2003. A non-iterative greedy algorithm for multi-frame point correspondence. In IEEE International Conference on Computer Vision, 110-115.
  37. Srinivasan, M.V., & Guy, R.G.,1990. Spectral properties of movement perception in the dronefly Eristalis. Journal of Comparative Physiology A, 166(3), 287- 295.
  38. Stavenga, D., 2003. Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics. Journal of Comparative Physiology A, 189(1): 1-17.
  39. Van Hateren, J. H. , & Schilstra, C., 1999. Blowfly flight and optic flow. II. Head movements during flight. Journal of Experimental Biology, 202(11), 1491-1500.
  40. Veenman, C.J., Marcel J.R, & Eric Backer, 2001. Resolving motion correspondence for densely moving points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(1): 54-72.
  41. Wachenfeld, A., 1994. Elektrophysiologische Untersuchungen und funktionelle Charakterisierung männchenspezifischer visueller Interneurone der Schmeissfliege Calliphora erythrocephala. Doctoral dissertation, Universität Köln.
  42. Wehrhahn, C., 1979. Sex-specific differences in the chasing behaviour of houseflies (Musca). Biological Cybernetics, 32(4): 239-241.
  43. Wiederman, S.D., O'Carroll, D.C., 2013. Selective Attention in an Insect Visual Neuron. Current Biology, 23:156-161.
  44. Wiederman, S.D., Shoemaker, P.A., & O'Carroll, D.C., 2008. A model for the detection of moving targets in visual clutter inspired by insect physiology. PloS One, 3(7):1-11.
  45. Yi, Z., & Liangzhong, F., 2010. Moving object detection based on running average background and temporal difference. In IEEE International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 270-272.
  46. Yilmaz, A., Javed, O., & Shah, M., 2006. Object tracking: A survey. ACM Computing Surveys (CSUR), 38(4): 13.
  47. Yilmaz, A., Li, X., & Shah, M., 2004. Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11), 1531-1536.
  48. Yin, Z., & Collins, R., 2007. Belief propagation in a 3D spatio-temporal MRF for moving object detection. In IEEE Conference on Computer Vision and Pattern Recognition, 1-8.
  49. Zhang, Z., & Faugeras, O.D., 1992. Three-dimensional motion computation and object segmentation in a long sequence of stereo frames. International Journal of Computer Vision, 7(3), 211-241.
  50. Zelek, J.S., 2002. Bayesian real-time optical flow. In Vision Interface, 266-273.
Download


Paper Citation


in Harvard Style

Bagheri Z., S. Cazzolato B., D. Wiederman S., Grainger S. and C. O'Carroll D. (2014). An Insect Inspired Object Tracking Mechanism for Autonomous Vehicles . In Doctoral Consortium - DCINCO, (ICINCO 2014) ISBN , pages 30-38


in Bibtex Style

@conference{dcinco14,
author={Zahra Bagheri and Benjamin S. Cazzolato and Steven D. Wiederman and Steven Grainger and David C. O'Carroll},
title={An Insect Inspired Object Tracking Mechanism for Autonomous Vehicles},
booktitle={Doctoral Consortium - DCINCO, (ICINCO 2014)},
year={2014},
pages={30-38},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCINCO, (ICINCO 2014)
TI - An Insect Inspired Object Tracking Mechanism for Autonomous Vehicles
SN -
AU - Bagheri Z.
AU - S. Cazzolato B.
AU - D. Wiederman S.
AU - Grainger S.
AU - C. O'Carroll D.
PY - 2014
SP - 30
EP - 38
DO -