Intelligent Path Panning Towards Collision-free Cooperating Industrial Robots

L. Larsen, J. Kim, M. Kupke

Abstract

Due to rising energy cost aircraft are intended to have a lower kerosine consumption. To achieve that aircraft manufacturers increase the usage of high performance, lightweight materials like carbon fibre reinforced plastics (CFRP). These materials pose new challenges to manufacturing processes concerning cost-effectiveness and quality requirements. The Institute of Structures and Design within the German Aerospace Center (DLR) designed a large (30m x 15m x 7m) robotic cell which is adequate to produce large airplane structures like fuselages. In this cell multiple robots share the same workspace. New methods are needed to program these robots to work cooperative on CFRP structures. The aim of these thesis is to develop path planning strategies for a CFRP process with cooperating robots using computational intelligence.

References

  1. Ali, M. S. A. D., Babu, N. R., Varghese, K., Engg, C., and Madras, I. I. T. (2002). Offline path planning of cooperative manipulators using co-evolutionary genetic algorithms. ISARC.
  2. Baraff, D. (2001). Physically Based Modeling: Rigid Body Simulation. Technical report.
  3. Barraquand, J., Langlas, B., and Latombe, J. C. (1992). Numerical Potential Field Techniques for Robot Path Planning. 22:224-241.
  4. Bradshaw, G. and O'Sullivan, C. (2004). Adaptive MedialAxis Approximation for Sphere-Tree Construction. ACM Transactions on Graphics, 23:1-26.
  5. Cameron, S. (1997). Enhancing GJK: Computing Minimum and Penetration Distances between Convex Polyhedra. In Proceedings of International Conference on Robotics and Automation, pages 3112-3117.
  6. Cheng, H. H. (1995). Real-time four-dimensional Collision Detection for an Industrial Robot Manipulator.
  7. Craig, J. J. (2005). Introduction to Robotics.
  8. Cueva, V. D. and Ramos, F. (2002). Adapting the Messy Genetic Algorithm for Path Planning in Redundant and Non-redundant Manipulators. (1):21-30.
  9. Curkovic, P., Jerbic, B., and Stipancic, T. (2013). CoEvolutionary Algorithm for Motion Planning of Two Industrial Robots with Overlapping Workspaces. International Journal of Advanced Robotic Systems, page 1.
  10. Daily, R. and Bevly, D. M. (2008). Harmonic Potential Field Path Planning for High Speed Vehicles. In American Control Conference, pages 4609-4614.
  11. Eberhart, R. C. and Shi, Y. (2007). Computational Intelligence Concepts to Implementations.
  12. Ehmann, S. A. and Lin, M. C. (2000). SWIFT: Accelerated Proximity Queries Using Multi-Level Voronoi Marching.
  13. Fawaz, K., Merzouki, R., and Ould-Bouamama, B. (2009). Model Based Real Time Monitoring for Collision Detection of an Industrial Robot. Mechatronics, 19(5):695 - 704.
  14. Figueiredo, M., Oliveira, J., Araujo, B., and Pereira, J. (2006). An Efficient Collision Detection Algorithm for Point Cloud Models. Technical report.
  15. Garg, D. P. and Kumar, M. (2002). Optimization techniques applied to multiple manipulators for path planning and torque minimization. Engineering Applications of Artificial Intelligence, 15(3-4):241-252.
  16. Gilbert, E. G. (1988). A Fast Procedure for Computing the Distance Between Objects in Three-Dimensional Space. Technical report.
  17. Gilbert, E. G. and Foo, C. P. (1990). Computing the Distance Between General Convex Objects in ThreeDimensional Space. IEEE Transactions on Robotics and Automation, 6(1):53-61.
  18. Gosselinj, C. (1994). Robot Path Planning Using Neural Networks and Fuzzy Logic. (418).
  19. Heidelberger, B. (2004). Detection of Collisions and Selfcollisions Using Image-space Techniques. Journal of WSCG, 12(3):145-152.
  20. Heidelberger, B., Teschner, M., and Gross, M. (2003). Volumetric Collision Detection for Deformable Objects. Technical report.
  21. Hermann, A. (2013). GPU-based real-time collision detection for motion execution in mobile manipulation planning. Advanced Robotics (ICAR), 2013 16th International Conference on.
  22. Huang, S.-j. and Lian, R.-j. (1997). A hybrid fuzzy logic and neural network algorithm for robot motion control. IEEE Transactions on Industrial Electronics, 44(3):408-417.
  23. Jang, H.-Y. (2006). GPU-based Image-space Approach to Collision Detection among Closed Objects.
  24. Jang, H.-Y., Jeong, T., and Han, J. (2007). Image-space Collision Detection Through Alternate Surface Peeling. In Proceedings of the 3rd international conference on Advances in visual computing - Volume Part I, ISVC'07, pages 66-75, Berlin, Heidelberg. SpringerVerlag.
  25. Juan C. Fraile, M. M. and Dodds, G. I. (1999). Optimization of Collision Free Trajectories in Multi-Robot Systems.
  26. Kazem, B. I., Mahdi, A. I., and Oudah, A. T. (2008). Motion Planning for a Robot Arm by Using Genetic Algorithm. 2(3):131-136.
  27. Kitamura, Y., Tanaka, T., Kishino, F., and Yachida, M. (1995). 3-D Path Planning in a Dynamic Environment Using an Octree and an Artificial Potential Field. Technical report.
  28. Klanke, S., Lebedev, D., Haschke, R., Steil, J., and Ritter, H. (2006). Dynamic Path Planning for a 7-DOF Robot Arm. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, (i):3879-3884.
  29. Klein, J. and Zachmann, G. (2004). Point Cloud Collision Detection. In Cani, M.-P. and Slater, M., editors, Computer Graphics forum (Proc. EUROGRAPHICS), volume 23, pages 567-576, Grenoble, France.
  30. Kockara, S., Halic, T., K.Iqbal, Bayrak, C., and Rowe, R. (2007). Collision detection: A survey. Technical report.
  31. LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge.
  32. Lebedev, D. V., Steil, J. J., and Ritter, H. J. (2005). The dynamic wave expansion neural network model for robot motion planning in time-varying environments. 49(0):1-50.
  33. Li, S., Chen, S., Liu, B., Li, Y., and Liang, Y. (2012). Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks. Neurocomputing, 91:1-10.
  34. Lin, M. C. and Canny, J. F. (1991). A Fast Algorithm for Incremental Distance Calculation. In In IEEE International Conference on Robotics and Automation, pages 1008-1014.
  35. Lin, M. C. and Manocha, D. (1993). Efficient Contact Determination Between Geometric Models. Technical report, International Journal of Computational Geometry And Applications.
  36. Mirtich, B. V. (1996). Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis. AAI9723116.
  37. Mirtich, B. V. (1998). V-Clip: fast and robust polyhedral collision detection. ACM Trans. Graph., 17(3):177- 208.
  38. Moore, M. and Wilhelms, J. (1988). Collision Detection and Response for Computer Animation. In Computer Graphics, pages 289-298.
  39. Myszkowski, K., Okunev, O. G., and Kunii, T. L. (1995). Fast Collision Detection Between Complex Solids Using Rasterizing Graphics Hardware. The Visual Computer, 11(9):497-511.
  40. Pan, J., Chitta, S., and Manocha, D. (2011). Probabilistic Collision Detection Between Noisy Point Clouds Using Robust Classification. In International Symposium on Robotics Research, Flagstaff, Arizona.
  41. Pedrocchi, N., Malosio, M., and Tosatti, L. M. (2009). Safe Obstacle Avoidance for Industrial Robot Working Without Fences. In Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, IROS'09, pages 3435-3440, Piscataway, NJ, USA. IEEE Press.
  42. Saravanan, R., Ramabalan, S., and Balamurugan, C. (2007). Evolutionary optimal trajectory planning for industrial robot with payload constraints. The International Journal of Advanced Manufacturing Technology, 38(11-12):1213-1226.
  43. Scott, D. S. and Vuillemin, J. (1986). Art Gallery Theorems and Algorithms.
  44. Stewart, N. T. (2008). An Image-Space Algorithm for Hardware-based Rendering of Constructive Solid Geometry - (1).
  45. Stroulia, E., Schneider, D., and Prassler, E. (1997). Purposeful and Reactive Navigation Based on 9 Qualitative Path Planning and Fuzzy Logic.
  46. Tang, L., Dian, S., Gu, G., Zhou, K., Wang, S., and Feng, X. (2010). A Novel Potential Field Method for Obstacle Avoidance and Path Planning of Mobile Robots. Technical report.
  47. Ting, Y., Lei, W., and Jar, H. (2002). A path planning algorithm for industrial robots. Computers & Industrial Engineering, 42(2-4):299-308.
  48. Tzafestas, C. S., Prokopiou, P. A., and Tzafestas, S. G. (1998). Path Planning and Control of a Cooperative Three-Robot System Manipulating Large Objects. pages 99-116.
  49. van den Bergen, G. (1999). A Fast and Robust GJK Implementation for Collision Detection of Convex Objects. J. Graph. Tools, 4(2):7-25.
  50. van den Bergen, G. (2001). Proximity Queries and Penetration Depth Computation on 3D Game Objects. In Proceedings of Game Developers Conference 2001, San Jose, CA.
  51. Yakut, I. D. (2010). Collision Detection of Multiple Moving Objects on GPU. Technical report.
  52. Zavlangas, P. G. and Tzafestas, S. G. (2000). Industrial Robot Navigation and Obstacle Avoidance Employing Fuzzy Logic. pages 85-97.
Download


Paper Citation


in Harvard Style

Larsen L., Kim J. and Kupke M. (2014). Intelligent Path Panning Towards Collision-free Cooperating Industrial Robots . In Doctoral Consortium - DCINCO, (ICINCO 2014) ISBN , pages 39-47


in Bibtex Style

@conference{dcinco14,
author={L. Larsen and J. Kim and M. Kupke},
title={Intelligent Path Panning Towards Collision-free Cooperating Industrial Robots},
booktitle={Doctoral Consortium - DCINCO, (ICINCO 2014)},
year={2014},
pages={39-47},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCINCO, (ICINCO 2014)
TI - Intelligent Path Panning Towards Collision-free Cooperating Industrial Robots
SN -
AU - Larsen L.
AU - Kim J.
AU - Kupke M.
PY - 2014
SP - 39
EP - 47
DO -