How to Guarantee Analysis Results Coherence after Data Warehouse Schema Changes Propagation towards Data Marts?

Noura Azaiez, Jalel Akaichi

Abstract

Data Warehouse, accompanied with Online analytical processing, is considered as the core of the modern Decision support systems. The emergence of new analytical requirements and changes in organization business processes push the underlying information sources, destined to feed the data warehouse, to modify not only their data, but also their structure. This, obviously, has a direct impact on Data Warehouse and its associated Data Marts. Maintaining Data Warehouse structure becomes, therefore, a must; however, it is not sufficient. In fact, evolutions performed on the Data Warehouse schema have to be propagated on the related Data Marts in order to minimize costs, time-consuming and to guarantee the coherence of provided analysis results; this presents our first vision issue for which, we aim to provide an adequate solution. Another issue, which is as important as the precedent one, focuses on modeling a continuous temporal evolution phenomenon and therefore reducing inconsistent Online analytical processing queries results. Indeed, data returned by queries can be the result of an evolution phenomenon continued in several time intervals. Therefore, we nominate the versioning approach as a solution to keep traces of Data Warehouse / Data Mart schemas’ modifications. Solving these two issues presents the key of organization Decision support systems durability and its material prosperity.

References

  1. Akaichi, J., Oueslati, W., 2008. MAVIE: A Mobile Agents View synchronization system. In first international conference on the applications of digital information and web technology (pp. 145-150).Ostravem.
  2. Azaiez, N., Taktak, S., Feki, J., 2013. DWEV : Un prototype pour l'évolution partielle du schéma multidimensionnel. In 7éme édition de la Conférence Maghrébine sur les Avancées des systèmes décisionnels (ASD), Marrakech, Maroc.
  3. Bellahsene, Z., 2002. Schema Evolution in Data Warehouses. Journal of Knowledge and Information Systems, 4 (3) (pp. 283-304).
  4. Body, M., Miquel M., Bédard, Y., Tchounikine, A., 2003. Handling Evolutions in Multidimensional Structures. In IEEE 19th International Conference on Data Engineering (ICDE) (pp. 581-591). Bangalore, India.
  5. Body, M., Miquel, M., Bédard, Y., Tchounikine, A., 2002. A multidimensional and multiversion structure for OLAP applications. In Proceedings of the 5th ACM International Workshop on Data Warehousing and OLAP (pp. 1-6). McLean, Virginia, USA.
  6. Eder, J., Koncilia, C., 2001. Changes of Dimension Data in Temporal Data Warehouses. In Proceedings of the DaWaK'01 Conference, (pp. 284-293). Munich, Germany.
  7. Gupta, A., Mumick, I., Ross, K., 1995. Adapting Materialized Views after redefinitions. SIGMOD 95, (pp. 211- 222).
  8. Hurtado, C. A., Mendelzon, A. O., Vaisman, A. A., 1999. Maintaining Data Cubes under Dimension Updates. In XVth International Conference on Data Engineering (ICDE 1999), IEEE Computer Society, (pp.346- 355).Sydney.
  9. Papastefanatos, G., Vassiliadis, PP., Simitsis, A., Sellis, T., Vassiliou, Y., 2009. Rulebased Management of Schema Changes at ETL Sources. In The International Workshop on Managing Evolution of Data Warehouses (MEDWa), Riga, Latvia.
  10. Quix, C., 2004. Repository Support for Data Warehouse Evolution. In Proceedings of the International Workshop DMDW, Heidelberg, Germany.
  11. Taktak, S., Feki, J., 2012. Toward Propagating the Evolution of Data Warehouse on Data Marts. In: MEDI 2012. Lecture Notes in Computer Science, Vol. 7602, Springer Verlag, Berlin Heidelberg (pp. 178-185). Poitiers, France.
  12. Zouari, I., Ghozzi, F., Bouaziz, R., 2008. Impact de l'évolution de nomenclature sur le versionnement des entrepôts de données. Ingénierie des Systèmes d'Information, volume 13, (pp. 85-114).
  13. Oueslati, W., Akaichi, J., 2011. A Multiversion Trajectory Data Warehouse to Handle Structure Changes, International Journal of Database Theory and Application, Vol. 4, No. 2. (pp. 35-50).
Download


Paper Citation


in Harvard Style

Azaiez N. and Akaichi J. (2014). How to Guarantee Analysis Results Coherence after Data Warehouse Schema Changes Propagation towards Data Marts? . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2014) ISBN 978-989-758-049-9, pages 428-435. DOI: 10.5220/0005158304280435


in Bibtex Style

@conference{keod14,
author={Noura Azaiez and Jalel Akaichi},
title={How to Guarantee Analysis Results Coherence after Data Warehouse Schema Changes Propagation towards Data Marts?},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2014)},
year={2014},
pages={428-435},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005158304280435},
isbn={978-989-758-049-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2014)
TI - How to Guarantee Analysis Results Coherence after Data Warehouse Schema Changes Propagation towards Data Marts?
SN - 978-989-758-049-9
AU - Azaiez N.
AU - Akaichi J.
PY - 2014
SP - 428
EP - 435
DO - 10.5220/0005158304280435