VirtualEnaction - A Platform for Systemic Neuroscience Simulation

Nicolas Denoyelle, Florian Pouget, Thierry Vieville, Frédéric Alexandre


Considering the experimental study of systemic models of the brain as a whole (in contrast to models of one brain area or aspect), there is a real need for tools designed to realistically simulate these models and to experiment them. We explain here why a robotic setup is not necessarily the best choice, and what are the general requirements for such a bench-marking platform. A step further, we describe an effective solution, freely available on line and already in use to validate functional models of the brain. This solution is a digital platform where the brainy-bot implementing the model to study is embedded in a simplified but realistic controlled environment. From visual, tactile and olfactory input, to body, arm and eye motor command, in addition to vital somesthetic cues, complex survival behaviors can be experimented. The platform is also complemented with algorithmic high-level cognitive modules, making the job of building biologically plausible bots easier.


  1. Beati, T., Carrere, M., and Alexandre, F. (2013). Which reinforcing signals in autonomous systems? In Third International Symposium on Biology of Decision Making, Paris, France.
  2. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Diesmann, M., Morrison, A., Goodman, P. H., Harris, F. C., Zirpe, M., Natschläger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A. P., El Boustani, S., and Destexhe, A. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience, 23(3):349-398.
  3. Carrere, M. and Alexandre, F. (2013). Ómergence de catégories par interaction entre systèmes d'apprentissage. In Preux, P. and Tommasi, M., editors, Conférence Francophone sur l'Apprentissage Automatique (CAP), Lille, France.
  4. Chemla, S., Chavane, F., Vieville, T., and Kornprobst, P. (2007). Biophysical cortical column model for optical signal analysis. BMC Neuroscience, 8(Suppl 2):P140.
  5. Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W. J., and Edwards, D. H. (2010). AnimatLab: a 3D graphics environment for neuromechanical simulations. Journal of neuroscience methods, 187(2):280- 288.
  6. Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and Yger, P. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Frontiers in neuroinformatics, 2.
  7. Denoyelle, N. and Pouget, F. (2014). Virtualenaction, user documentation. Technical report,
  8. Friston, K. (2012). A Free Energy Principle for Biological Systems. Entropy, 14(11):2100-2121.
  9. Gorojosky, R. and Alexandre, F. (2013). Models of Hippocampus for pavlovian learning. Rapport de recherche RR-8377, INRIA.
  10. Hyvärinen, A. (2009). Natural image statistics a probabilistic approach to early computational vision. Hardcover.
  11. Pouget, F. and Denoyelle, N. (2014). Virtualenaction, developer documentation. Technical report,
  12. Taouali, W., Viéville, T., Rougier, N. P., and Alexandre, F. (2011). No clock to rule them all. Journal of physiology, Paris, 105(1-3):83-90.
  13. Teftef, E., Escobar, M.-J., Astudillo, A., Carvajal, C., Cessac, B., Palacios, A., Viéville, T., and Alexandre, F. (2013). Modeling non-standard retinal in/out function using computer vision variational methods. Rapport de recherche RR-8217, INRIA.
  14. Uithol, S., van Rooij, I., Bekkering, H., and Haselager, P. (2012). Hierarchies in action and motor control. Journal of cognitive neuroscience, 24(5):1077-1086.
  15. Viéville, T. and Crahay, S. (2004). Using an Hebbian learning rule for multi-class SVM classifiers. Journal of Computational Neuroscience.
  16. Viéville, T. and Vadot, C. (2006). An improved biologically plausible trajectory generator. Technical Report 4539- 2, INRIA.

Paper Citation

in Harvard Style

Denoyelle N., Pouget F., Vieville T. and Alexandre F. (2014). VirtualEnaction - A Platform for Systemic Neuroscience Simulation . In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014) ISBN 978-989-758-056-7, pages 155-163. DOI: 10.5220/0005166701550163

in Bibtex Style

author={Nicolas Denoyelle and Florian Pouget and Thierry Vieville and Frédéric Alexandre},
title={VirtualEnaction - A Platform for Systemic Neuroscience Simulation},
booktitle={Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014)},

in EndNote Style

JO - Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014)
TI - VirtualEnaction - A Platform for Systemic Neuroscience Simulation
SN - 978-989-758-056-7
AU - Denoyelle N.
AU - Pouget F.
AU - Vieville T.
AU - Alexandre F.
PY - 2014
SP - 155
EP - 163
DO - 10.5220/0005166701550163