Neuron Models in FPGA Hardware - A Route from High Level Descriptions to Hardware Implementations

Finn Krewer, Aedan Coffey, Frank Callaly, Fearghal Morgan

Abstract

This paper presents the LEMS2HDL toolsuite which converts Low Entropy Model Specification (LEMS) neuron/neural network models to synthesisable Hardware Description Language (HDL) hardware descriptions. The LEMS2HDL process will provide a route for the neuroscience community to perform accelerated Field-Programmable Gate Array (FPGA) hardware implementations of the growing library of LEMS neuron/neural network models. The paper describes the LEMS to HDL conversion process and references the previously reported vicilogic platform. The paper compares the resulting FPGA hardware simulation of three LEMS neuron models with the LEMS model simulation.

References

  1. Bec?vár?, M. and S? tukjunger, P. (2005). Fixed-point arithmetic in FPGA. Acta Polytechnica, 45(2).
  2. Bower, J. M., Beeman, D., and Wylde, A. M. (1998). The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. Telos Santa Clara, Calif.
  3. Carnevale, N. and Hines, M. (2006). The NEURON Book. Cambridge, UK: Cambridge University Press.
  4. Foundation, A. (2007). Apache velocity - velocity user guide.
  5. Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S., and Brown, A. (2013). Overview of the SpiNNaker system architecture. IEEE Transactions on Computers, 62(12):2454-2467.
  6. Glackin, B., McGinnity, T. M., Maguire, L. P., Wu, Q. X., and Belatreche, A. (2005). A novel approach for the implementation of large scale spiking neural networks on FPGA hardware. In Cabestany, J., Prieto, A., and Sandoval, F., editors, Computational Intelligence and Bioinspired Systems, number 3512 in Lecture Notes in Computer Science, pages 552-563. Springer Berlin Heidelberg.
  7. Gleeson, P., Crook, S., Silver, A., and Cannon, R. (2011). Development of NeuroML version 2.0: greater extensibility, support for abstract neuronal models and interaction with systems biology languages. BMC Neuroscience, 12(Suppl 1):P29.
  8. Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networks in python. Front Neuroinform, 2:5.
  9. Maguire, L. P., McGinnity, T. M., Glackin, B., Ghani, A., Belatreche, A., and Harkin, J. (2007). Challenges for large-scale implementations of spiking neural networks on FPGAs. Neurocomputing, 71(1-3):13- 29.
  10. Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar, A. (2012). Bluehive - a field-programable custom computing machine for extreme-scale realtime neural network simulation. pages 133-140. IEEE.
  11. Morgan, F., Cawley, S., Coffey, A., Callaly, F., Donovan, L., Neelen, M., Lyons, D., Nugent, D., Killoran, P., and O'Loughlin, D. (2014). Vicilogic: Online learning and prototyping platform for digital logic and computer architecture.
  12. Pande, S. (2014). Design Exploration of EMBRACE Hardware Spiking Neural Network Architecture and Applications. Thesis.
  13. W. Gerstner, W. M. K. (2002). Spiking Neuron Models.
  14. Xilinx (2011). Spartan-6 family overview : Product specification.
  15. Xilinx (2014). 7 series FPGAs overview : Product specification.
Download


Paper Citation


in Harvard Style

Krewer F., Coffey A., Callaly F. and Morgan F. (2014). Neuron Models in FPGA Hardware - A Route from High Level Descriptions to Hardware Implementations . In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014) ISBN 978-989-758-056-7, pages 177-183. DOI: 10.5220/0005190501770183


in Bibtex Style

@conference{nebica14,
author={Finn Krewer and Aedan Coffey and Frank Callaly and Fearghal Morgan},
title={Neuron Models in FPGA Hardware - A Route from High Level Descriptions to Hardware Implementations},
booktitle={Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014)},
year={2014},
pages={177-183},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005190501770183},
isbn={978-989-758-056-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NeBICA, (NEUROTECHNIX 2014)
TI - Neuron Models in FPGA Hardware - A Route from High Level Descriptions to Hardware Implementations
SN - 978-989-758-056-7
AU - Krewer F.
AU - Coffey A.
AU - Callaly F.
AU - Morgan F.
PY - 2014
SP - 177
EP - 183
DO - 10.5220/0005190501770183