ZiZo: Modeling, Simulation and Verification of Reconfigurable Real-time Control Tasks Sharing Adaptive Resources - Application to the Medical Project BROS

Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed Khalgui, Georg Frey

Abstract

This research paper deals with the modeling, simulation and model checking of reconfigurable discrete-event control systems to be distributed on networked devices. A system is composed of software tasks with shared resources to control physical processes. A reconfiguration scenario is assumed to be a run-time automatic operation that modifies the system’s structure by adding or removing tasks or resources according to user requirements in order to adapt the whole architecture to its environment. Nevertheless, a reconfiguration can bring the system to a blocking problem that is sometimes unsafe, or violates real-time properties. We define new Petri Nets-based modeling solutions for both tasks and resources to meet these constraints. These solutions are applied to a real case study named Browser-based Reconfigurable Orthopedic Surgery (abbrev. BROS) to illustrate the paper’s contribution. A new Petri Nets-based editor and random-simulator named ZiZo is developed to model and simulate the BROS reconfigurable architecture. It is based also on the model checker SESA to apply an exhaustive CTL-based formal verification of this architecture to ensure safe reconfiguration scenarios of tasks and resources.

References

  1. Kwoh, Y. S., Hou, J., Jonckheere, E. A., and Hayati, S. (1988). A robot with improved absolute positioning accuracy for ct guided stereotactic brain surgery. Biomedical Engineering, IEEE Transactions on, 35(2):153-160.
  2. Cleary, K. and Nguyen, C. (2001). State of the art in surgical robotics: clinical applications and technology challenges. Computer Aided Surgery, 6(6):312-328.
  3. Wang, Y., Butner, S. E., and Darzi, A. (2006). The developing market for medical robotics. PROCEEDINGSIEEE, 94(9):1763.
  4. Gomes, P. (2011). Surgical robotics: Reviewing the past, analysing the present, imagining the future. Robotics and Computer-Integrated Manufacturing, 27(2):261- 266.
  5. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., and AlAhmari, A. M. (2013). R-tnces: A novel formalism for reconfigurable discrete event control systems. Systems, Man, and Cybernetics: Systems, IEEE Transactions on, 43(4):757-772.
  6. Salem, M. O. B., Mosbahi, O., and Khalgui, M. (2014). Pcp-based solution for resource sharing in reconfigurable timed net condition/event systems. In ADECS 2014, Proceedings of the 1st International Workshop on Petri Nets for Adaptive Discrete-Event Control Systems, co-located with 35th International Conference on Application and Theory of Petri Nets and Concurrency (Petri Nets 2014), Tunis, Tunisia, June 24, 2014., pages 52-67.
  7. Hanisch, H.-M., Thieme, J., Luder, A., and Wienhold, O. (1997). Modeling of plc behavior by means of timed net condition/event systems. In Emerging Technologies and Factory Automation Proceedings, 1997. ETFA 7897., 1997 6th International Conference on, pages 391-396.
  8. Ratzer, A. V., Wells, L., Lassen, H. M., Laursen, M., Qvortrup, J. F., Stissing, M. S., Westergaard, M., Christensen, S., and Jensen, K. (2003). Cpn tools for editing, simulating, and analysing coloured petri nets. In Applications and Theory of Petri Nets 2003, pages 450-462. Springer.
  9. Genter, G., Bogdan, S., Kovacic, Z., and Grubisic, I. (2007). Software tool for modeling, simulation and real-time implementation of petri net-based supervisors. In Control Applications, 2007. CCA 2007. IEEE International Conference on, pages 664-669. IEEE.
  10. Suender, C., Vyatkin, V., and Zoitl, A. (2011). Formal validation of downtimeless system evolution in embedded automation controllers. ACM Transactions on Embedded Control Systems.
  11. Dubinin, V., Hanisch, H., and Karras, S. Building of reachability graph extractions using a graph rewriting system. In proceedings of the 7th International Conference of Science and Technology, NITis 2006.
  12. Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inheritance protocols: An approach to real-time synchronization. Computers, IEEE Transactions on, 39(9):1175-1185.
  13. Goodenough, J. B. and Sha, L. (1988). The priority ceiling protocol: A method for minimizing the blocking of high priority Ada tasks, volume 8. ACM.
  14. Brubacher, J. W. and Dodds, S. D. (2008). Pediatric supracondylar fractures of the distal humerus. Current reviews in musculoskeletal medicine, 1(3-4):190-196.
  15. Cheng, J. C., Ng, B., Ying, S., and Lam, P. (1999). A 10- year study of the changes in the pattern and treatment of 6,493 fractures. Journal of Pediatric Orthopaedics, 19(3):344-350.
  16. Landin, L. A. and Danielsson, L. G. (1986). Elbow fractures in children: an epidemiological analysis of 589 cases. Acta Orthopaedica, 57(4):309-312.
  17. Landin, L. A. (1983). Fracture patterns in children: Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a swedish urban population 1950-1979. Acta Orthopaedica, 54(S202):3-109.
  18. Gosens, T. and Bongers, K. J. (2003). Neurovascular complications and functional outcome in displaced supracondylar fractures of the humerus in children. Injury, 34(4):267-273.
  19. Flynn, J. C. (1993). Displaced supracondylar fracture of the humerus in children: Technique of closed reduction and percutaneous pinning. Operative Techniques in Orthopaedics, 3(2):121-127.
  20. Flynn, J. C., Matthews, J. G., Benoit, R. L., et al. (1974). Blind pinning of displaced supracondylar fractures of the humerus in children. J Bone Joint Surg Am, 56(2):263-72.
  21. Livyatan, H., Yaniv, Z., and Joskowicz, L. (2002). Robus automatic c-arm calibration for fluoroscopy-based navigation: a practical approach. In Medical Image Computing and Computer-Assisted InterventionMICCAI 2002, pages 60-68. Springer.
  22. Clein, N. W. (1954). How safe is x-ray and fluoroscopy for the patient andthe doctor? The Journal of pediatrics, 45(3):310-315.
  23. Judet, J. (1953). Traitement des fractures sus-condyliennes transversales de l'humérus chez l'enfant. Rev Chir Orthop, 39:199-212.
  24. Smida, M., Smaoui, H., Ben Jlila, T., Saeid, W., Safi, H., Ammar, C., Jalel, C., and Ben Ghachem, M. (2007). Un index de stabilité pour l'embrochage percutané latéral parallèle des fractures supracondyliennes du coude chez l'enfant. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur, 93(4):404.
  25. Starke, P. H. and Roch, S. (2002). Analysing signal-net systems. Professoren des Inst. für Informatik.
  26. MIKAELSSON, P. and CURTIS, M. (2009). Portraitrobot d'un petit prodige: Abb présente son nouveau robot irb 120 et son armoire de commande irc5 compact. Revue ABB, (4):39-41.
Download


Paper Citation


in Harvard Style

Ben Salem M., Mosbahi O., Khalgui M. and Frey G. (2015). ZiZo: Modeling, Simulation and Verification of Reconfigurable Real-time Control Tasks Sharing Adaptive Resources - Application to the Medical Project BROS . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015) ISBN 978-989-758-068-0, pages 20-31. DOI: 10.5220/0005181600200031


in Bibtex Style

@conference{healthinf15,
author={Mohamed Oussama Ben Salem and Olfa Mosbahi and Mohamed Khalgui and Georg Frey},
title={ZiZo: Modeling, Simulation and Verification of Reconfigurable Real-time Control Tasks Sharing Adaptive Resources - Application to the Medical Project BROS},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)},
year={2015},
pages={20-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005181600200031},
isbn={978-989-758-068-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)
TI - ZiZo: Modeling, Simulation and Verification of Reconfigurable Real-time Control Tasks Sharing Adaptive Resources - Application to the Medical Project BROS
SN - 978-989-758-068-0
AU - Ben Salem M.
AU - Mosbahi O.
AU - Khalgui M.
AU - Frey G.
PY - 2015
SP - 20
EP - 31
DO - 10.5220/0005181600200031