Handling Default Data under a Case-based Reasoning Approach

Bruno Fernandes, Mauro Freitas, Cesar Analide, Henrique Vicente, José Neves

Abstract

The knowledge acquired through past experiences is of the most importance when humans or machines try to find solutions for new problems based on past ones, which makes the core of any Case-based Reasoning approach to problem solving. On the other hand, existent CBR systems are neither complete nor adaptable to specific domains. Indeed, the effort to adapt either the reasoning process or the knowledge representation mechanism to a new problem is too high, i.e., it is extremely difficult to adapt the input to the computational framework in order to get a solution to a particular problem. This is the drawback that is addressed in this work.

References

  1. Aamodt A. & Plaza E., 1994. “Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches”, AI Communications. IOS Press, Vol. 7: 1, pp. 39-59.
  2. Althoff K-D, Auriol E., Barletta R. & Manago M., 1995, “A Review of Industrial Case-Based Reasoning Tools”, AI Intelligence.
  3. Balke T., Novais P., Andrade F. & Eymann T., 2009. “From Real-World Regulations to Concrete Norms for Software Agents - A Case-Based Reasoning Approach”, ICAIL.
  4. Brüninghaus S. & Ashley K., 2003. “Combining CaseBased and Model-Based Reasoning for Predicting the Outcome of Legal Cases”, Proceedings of the Fifth International Conference on Case-Based Reasoning (ICCBR-03), pp. 65-79.
  5. Cardoso L., Martins F., Magalhães R., Martins N., Oliveira T., Abelha A., Machado J. & Neves J., 2013. “Schizophrenia Detection through an Artificial Neural Network based System”.
  6. Carneiro D., Novais P., Andrade F., Zeleznikow J. & Neves J., 2009. “The Legal Precedent in Online Dispute Resolution”, Jurix.
  7. Carneiro D., Novais P., Andrade F., Zeleznikow J. & Neves J., 2010. “Using Case Based Reasoning to Support Alternative Dispute Resolution”, Series Advances in Intelligent and Soft Computing.
  8. Dice L., 1945. “Measures of the Amount of Ecologic Association Between Species”, Ecology 26, pp. 297- 302.
  9. Gelfond M. & Lifschitz V., 1988. “The stable model semantics for logic programming”, in Logic Programming - Proceedings of the Fifth International Conference and Symposium, pp. 1070-1080.
  10. Halpern J., 2005. “Reasoning about uncertainty”, Massachusetts: MIT Press, 2005.
  11. Kakas A., Kowalski R. & Toni F., 1998. “The role of abduction in logic programming”, in Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 5, pp. 235-324.
  12. Khan A. & Hoffmann A., 2002. “Building a case-based diet recommendation system”, Artificial Intelligence in Medicine 27, pp. 155-179.
  13. Kolodner J., 1992. “An Introduction to Case-Based Reasoning”, Artificial Intelligence Review 6, pp. 3-34.
  14. Kolodner J., 1993. “Case-Based Reasoning”, in Morgan Kaufmann.
  15. Kovalerchuck B. & Resconi G., 2010. “Agent-based uncertainty logic network”, in Proceedings of the IEEE International Conference on Fuzzy Systems - FUZZ-IEEE, pp. 596-603.
  16. Levenshtein V., 1966. “Binary codes capable of correcting deletions, insertions, and reversals”, Soviet Physics Doklady, pp. 707-710.
  17. Lucas P., 2003. “Quality checking of medical guidelines through logical abduction”, in Proceedings of AI2003, London: Springer, pp. 309-321.
  18. Machado J., Abelha A., Novais P. & Neves J., 2010. “Quality of service in healthcare units”, International Journal of Computer Aided Engineering and Technology, Vol. 2, pp. 436-449.
  19. Neves J., 1984. “A logic interpreter to handle time and negation in logic data bases”, in Proceedings of the 1984 annual conference of the ACM on the fifth generation challenge, pp. 50-54.
  20. Neves J., Machado J., Analide C., Abelha A. & Brito L., 2007. “The halt condition in genetic programming”, in Progress in Artificial Intelligence - Lecture Notes in Computer Science, Vol. 4874, pp. 160-169.
  21. Neves J., Ribeiro J., Pereira P., Alves V., Machado J., Abelha A., Novais P., Analide C., Santos M. & Fernández-Delgado M., 2012. “Evolutionary intelligence in asphalt pavement modeling and quality-of-information”, Progress in Artificial Intelligence, Vol. 1, pp. 119-135.
  22. Pereira L. & Anh H., 2009. “Evolution prospection”, in New Advances in Intelligent Decision Technologies - Results of the First KES International Symposium IDT, pp. 51-64.
  23. Riesbeck C. & Schank R., 1991. “From Training to Teaching: Techniques for Case-Based ITS”, Intelligent Tutoring Systems: Evolution in Design, Lawrence Erlbaum Associates, Hillsdale, pp. 55-78.
  24. Rissland E. & Ashley K., 1989. “HYPO: A PrecedentBased Legal Reasoner”, Recent Advances in Computer Science and Law.
  25. Rissland E. & Skalak D., 1989. “Case-Based Reasoning in a Rule-Governed Domain”, In Proceedings of the Fifth IEEE Conference on Artificial Intelligence Applications.
  26. Skalak D. & Rissland E., 1992. “Arguments and cases: An inevitable intertwining”, Artificial Intelligence and Law, pp. 3-44.
  27. Stahl A. & Gabel T., 2006. “Optimizing Similarity Assessment in Case-Based Reasoning”, 21st National Conference on Artificial Intelligence.
  28. Tsinakos A., 2003. “Asynchronous distance education: Teaching using Case Based Reasoning”, Turkish Online Journal of Distance Education - TOJDE.
  29. Watson I. & Marir F., 1994. “Case-Based Reasoning: A Review”, The Knowledge Engineering Review, Vol. 9.
  30. Watson I., 1996. “Case-Based Reasoning Tools: An Overview”.
  31. Winkler W., 1990. "String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage”, Proceedings of the Section on Survey Research Methods, pp. 354-359.
Download


Paper Citation


in Harvard Style

Fernandes B., Freitas M., Analide C., Vicente H. and Neves J. (2015). Handling Default Data under a Case-based Reasoning Approach . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-074-1, pages 294-304. DOI: 10.5220/0005184602940304


in Bibtex Style

@conference{icaart15,
author={Bruno Fernandes and Mauro Freitas and Cesar Analide and Henrique Vicente and José Neves},
title={Handling Default Data under a Case-based Reasoning Approach},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2015},
pages={294-304},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005184602940304},
isbn={978-989-758-074-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Handling Default Data under a Case-based Reasoning Approach
SN - 978-989-758-074-1
AU - Fernandes B.
AU - Freitas M.
AU - Analide C.
AU - Vicente H.
AU - Neves J.
PY - 2015
SP - 294
EP - 304
DO - 10.5220/0005184602940304