Meshing Meristems - An Iterative Mesh Optimization Method for Modeling Plant Tissue at Cell Resolution

Guillaume Cerutti, Christophe Godin

2015

Abstract

We address in this paper the problem of reconstructing a mesh representation of plant cells in a complex, multi-layered tissue structure, based on segmented images obtained from confocal microscopy of shoot apical meristem of model plant Arabidopsis thaliana. The construction of such mesh structures for plant tissues is currently a missing step in the existing image analysis pipelines. We propose a method for optimizing the surface triangular meshes representing the tissue simultaneously along several criteria, based on an initial low-quality mesh. The mesh geometry is deformed by iteratively minimizing an energy functional defined over this discrete surface representation. This optimization results in a light discrete representation of the cell surfaces that enables fast visualization, and quantitative analysis, and gives way to in silico physical and mechanical simulations on real-world data. We provide a framework for evaluating the quality of the cell tissue reconstruction, that underlines the ability of our method to fit multiple optimization criteria.

References

  1. Amenta, N., Bern, M. W., and Eppstein, D. (1997). Optimal point placement for mesh smoothing. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 528-537.
  2. Barbier de Reuille, P., Bohn-Courseau, I., Godin, C., and Traas, J. (2005). A protocol to analyse cellular dynamics during plant development. The Plant Journal, 44(6):1045-1053.
  3. Barbier de Reuille, P., Robinson, S., and Smith, R. S. (2014). Quantifying cell shape and gene expression in the shoot apical meristem using MorphoGraphX. In Plant Cell Morphogenesis, pages 121-134.
  4. Chakraborty, A., Perales, M. M., Reddy, G. V., and Roy Chowdhury, A. K. (2013). Adaptive geometric tessellation for 3d reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images. PLoS One, 8(8).
  5. Chakraborty, A., Yadav, R., Reddy, G. V., and Roy Chowdhury, A. K. (2011). Cell resolution 3d reconstruction of developing multilayer tissues from sparsely sampled volumetric microscopy images. In BIBM, pages 378-383.
  6. Chan, T. and Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277.
  7. Dufour, A., Thibeaux, R., Labruyere, E., Guillen, N., and Olivo-Marin, J.-C. (2011). 3-d active meshes: Fast discrete deformable models for cell tracking in 3-d time-lapse microscopy. IEEE Transactions on Image Processing, 20(7).
  8. Fernandez, R., Das, P., Mirabet, V., Moscardi, E., Traas, J., Verdeil, J.-L., Malandain, G., and Godin, C. (2010). Imaging plant growth in 4D : robust tissue reconstruction and lineaging at cell resolution. Nature Methods, (7):547-553.
  9. Field, D. A. (1988). Laplacian smoothing and delaunay triangulations. Communications in Applied Numerical Methods, 4(6):709-712.
  10. Field, D. A. (2000). Qualitative measures for initial meshes. International Journal for Numerical Methods in Engineering, 47(4):887-906.
  11. Freitag, L. A. (1997). On combining laplacian and optimization-based mesh smoothing techniques. In Trends in Unstructured Mesh Generation, pages 37- 43.
  12. Guignard, L., Godin, C., Fiuza, U.-M., Hufnagel, L., Lemaire, P., and Malandain, G. (2014). Spatiotemporal registration of embryo images. In IEEE International Symposium on Biomedical Imaging.
  13. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1993). Mesh optimization. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7893, pages 19-26.
  14. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active Contour Models. International Journal of Computer Vision, 1(4):321-331.
  15. Keller, P. J. (2013). Imaging morphogenesis: Technological advances and biological insights. Science, 340(6137).
  16. Kwiatkowska, D. (2004). Surface growth at the reproductive shoot apex of Arabidopsis thaliana pin-formed 1 and wild type. Journal of Experimental Botany, 55(399):1021-1032.
  17. Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface construction algorithm. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7887, pages 163-169.
  18. Michelin, G., Guignard, L., Fiuza, U.-M., Malandain, G., et al. (2014). Embryo cell membranes reconstruction by tensor voting. In IEEE International Symposium on Biomedical Imaging.
  19. Owen, S. J. (1998). A survey of unstructured mesh generation technology. In International Meshing Roundtable, pages 239-267.
  20. Rizzi, B. and Peyrieras, N. (2014). Towards 3d in silico modeling of the sea urchin embryonic development. Journal of Chemical Biology, 7(1):17-28.
  21. Robin, F. B., Dauga, D., Tassy, O., Sobral, D., Daian, F., and Lemaire, P. (2011). Time-lapse imaging of live Phallusia embryos for creating 3d digital replicas. Cold Spring Harbor Protocols, 1244(6).
  22. Shewchuk, J. R. (1998). Tetrahedral mesh generation by Delaunay refinement. In Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG 7898, pages 86-95.
  23. Tataw, O. M., Reddy, G. V., Keogh, E. J., and Roy Chowdhury, A. K. (2013). Quantitative analysis of live-cell growth at the shoot apex of arabidopsis thaliana: Algorithms for feature measurement and temporal alignment. IEEE/ACM Trans. Comput. Biology Bioinform., 10(5):1150-1161.
  24. CGAL (1996). CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
  25. Vidal, V., Wolf, C., and Dupont, F. (2012). Combinatorial mesh optimization. The Visual Computer, 28(5):511- 525.
Download


Paper Citation


in Harvard Style

Cerutti G. and Godin C. (2015). Meshing Meristems - An Iterative Mesh Optimization Method for Modeling Plant Tissue at Cell Resolution . In Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015) ISBN 978-989-758-072-7, pages 23-35. DOI: 10.5220/0005190100230035


in Bibtex Style

@conference{bioimaging15,
author={Guillaume Cerutti and Christophe Godin},
title={Meshing Meristems - An Iterative Mesh Optimization Method for Modeling Plant Tissue at Cell Resolution},
booktitle={Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015)},
year={2015},
pages={23-35},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005190100230035},
isbn={978-989-758-072-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015)
TI - Meshing Meristems - An Iterative Mesh Optimization Method for Modeling Plant Tissue at Cell Resolution
SN - 978-989-758-072-7
AU - Cerutti G.
AU - Godin C.
PY - 2015
SP - 23
EP - 35
DO - 10.5220/0005190100230035