High Voltage Integrated Chip Power Recovering Topology for Implantable Wireless Biomedical Devices

Vijith Vijayakumaran Nair, Jinhwan Youn, Jun Rim Choi

Abstract

In near field wireless power links for biomedical implants, inductive voltage at receiver end (Rx) largely exceeds the compliance of low voltage integrated power recovery circuits. To limit the magnitude of induced signal, most of the low voltage (LV) integrated power recovery schemes employ methods like voltage clipping and shunt regulation. These methods are proved to be power inefficient. Therefore, to overcome the voltage limitation and to improve the power efficiency, we propose an on-chip high-voltage (HV) power recovery scheme based on step-down approach, which allows supply voltage as high as 30V. The proposed design comprises of enhanced semi-active HV bridge rectifier, reference voltage generator and HV series voltage regulator. In addition, a battery management circuit that ensures safe and reliable charging of the implant battery is proposed and implemented. The proposed design is fabricated with 0.35μm HV BCD technology based on LOCOS 0.35μm CMOS process. Rectifier and regulator power efficacy are analyzed and compared through simulation and measurement results.

References

  1. Balachandran, G. and Barnett, R. (2006). A 110 na voltage regulator system with dynamic bandwidth boosting for rfid systems. Solid-State Circuits, IEEE Journal of, 41(9):2019-2028.
  2. Ballan, H., Declercq, M., and Krummenacher, F. (1994). Design and optimization of high voltage analog and digital circuits built in a standard 5v cmos technology. In IEEE Custom Integrated circuits Conference, pages 574-577.
  3. Cha, H. K., Park, W. T., and Je, M. (2012). A cmos rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications. IEEE Transactions on Circuits and Systems-ll:Briefs, 59(7):409-413.
  4. Chen, M. and Rincon-Mora, G. (2006). Accurate, compact, and power-efficient li-ion battery charger circuit. Circuits and Systems II: Express Briefs, IEEE Transactions on, 53(11):1180-1184.
  5. Do Valle, B., Wentz, C., and Sarpeshkar, R. (2011). An area and power-efficient analog li-ion battery charger circuit. Biomedical Circuits and Systems, IEEE Transactions on, 5(2):131-137.
  6. Garimella, A., Furth, P. M., Surkanti, P. R., and Thota, N. R. (2011). Current buffer compensation topologies for ldos with improved transient performance. Analog Integr Circ Sig Process, 73(1):131-142.
  7. Guo, S. and Lee, H. (2009). An effiency-enhanced cmos rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants. IEEE Journal of solid-State Circuits, 44(6):1796- 1804.
  8. Huang, P., Lin, H., and Lin, Y. T. (2006). A simple subthreshold cmos voltage reference circuit with channellength modulation compensation. IEEE Transactions on Circuits and Systems II: Express Briefs, 53(9):882- 885.
  9. Lee, H. M. and Ghovanloo, M. (2011). An integrated power-efficient active rectifier with offset-controlled high speed comparators for inductively powered applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(8):1749-1760.
  10. Li, P. and Bashirullah, R. (2007). A wireless power interface for rechargeable battery operated medical implants. Circuits and Systems II: Express Briefs, IEEE Transactions on, 54(10):912-916.
  11. Li, Y. T., Chang, C. H., Chen, J. J. J., Wang, C. C., and Liang, C. K. (2005). Development of implantable wireless biomicrosystem for measuring electrodetissue impedance. Journal of Medical and Biological Engineering,, 25(3):99-105.
  12. Li, Y. T., Peng, C. W., Chen, L. T., Lin, W. S., Chu, C. H., and Chen, J. J. J. (2013). Application of implantable wireless biomicrosystem for monitoring nerve impedance of rat after sciatic nerve injury. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1(21):121-128.
  13. Mandal, S. and Sarpeshkar, R. (2007). Low-power cmos rectifier design for rfid applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6):1177-1188.
  14. Mounaïm, F. and Sawan, M. (2011). Integrated highvoltage inductive power and data-recovery front end dedicated to implantable devices. IEEE Transactions on Bio-Medical Circuits and Systems, 5(3):283-291.
  15. Mounaim, F. and Sawan, M. (2012). Toward a fully integrated neurostimulator with inductive power recovery front-end. Biomedical Circuits and Systems, IEEE Transactions on, 6(4):309-318.
  16. Nakamoto, H., Yamazaki, D., Yamamoto, T., Kurata, H., Yamada, S., Mukaida, K., Ninomiya, T., Ohkawa, T., Masui, S., and Gotoh, K. (2007). A passive uhf rf idetification cmos tag ic using ferroelectric ram in 0.35- um technology. IEEE Journal of solid-State Circuits, 42(1):101-110.
  17. Nicolson, S. and Phang, K. (2004). Step-up versus stepdown dc/dc converters for rf-powered systems. In Circuits and Systems, 2004. ISCAS 7804. Proceedings of the 2004 International Symposium on, volume 5, pages V-900-V-903 Vol.5.
  18. Rincon-Mora, G. A. and Gabriel, A. (2009). Analog IC Design With Low-dropout Regulators. McGraw-Hill.
  19. Su, C., Islam, S. K., Zhu, K., and Zuo, L. (2012). A hightemperature, high-voltage, fast response linear voltage regulator. Analog Integr Circ Sig Process, 72:405- 417.
  20. Thil, M. A., Gerard, B., Jarvis, J. C., Vince, V., Veraart, C., Colin, I. M., and Delbeke, J. (2004). Tissue-electrode interface changes in the first week after spiral cuff implantation: Preliminary results. In Annual Conference of the International FES Society.
  21. Tomita, K., Shinoda, R., Kuroda, T., and Ishikuro, H. (2012). 1-w 3.3 -16.3-v boosting wireless power transfer circuits with vector summing power controller. IEEE Journal of solid-State Circuits, 47(11):2576- 2585.
  22. Wang, G., Liu, W., Sivaprakasam, M., and Kendir, G. A. (2005). Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Transactions on Cicuits and Systems-1, 52(10):2109- 2117.
  23. Zou, V. and T, L. (2012). Modeling of substrate leakage currents in a high-voltage cmos rectifier. Analog Integr Circ Sig Process, 71:231-236.
Download


Paper Citation


in Harvard Style

Vijayakumaran Nair V., Youn J. and Choi J. (2015). High Voltage Integrated Chip Power Recovering Topology for Implantable Wireless Biomedical Devices . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 13-22. DOI: 10.5220/0005194000130022


in Bibtex Style

@conference{biodevices15,
author={Vijith Vijayakumaran Nair and Jinhwan Youn and Jun Rim Choi},
title={High Voltage Integrated Chip Power Recovering Topology for Implantable Wireless Biomedical Devices},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)},
year={2015},
pages={13-22},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005194000130022},
isbn={978-989-758-071-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)
TI - High Voltage Integrated Chip Power Recovering Topology for Implantable Wireless Biomedical Devices
SN - 978-989-758-071-0
AU - Vijayakumaran Nair V.
AU - Youn J.
AU - Choi J.
PY - 2015
SP - 13
EP - 22
DO - 10.5220/0005194000130022