Study of Human Activity Related to Residential Energy Consumption Using Multi-level Simulations

Thomas Huraux, Nicolas Sabouret, Yvon Haradji

Abstract

In this paper, we illustrate how multi-agent multi-level modeling can help energy experts to better understand and anticipate residential energy consumption. The problem we study is the anticipation of electricity consumption peaks. We explain in this context the benefit of the coexistence of microscopic (human activity) and macroscopic (social characteristics, overall consumption) levels of representation. We present briefly the SIMLAB model (Huraux et al., 2014) that extends the SMACH simulator (Amouroux et al., 2013) with coexisting levels on different modeling axes. We then present a model of the households activity and its electrical consumption consistent with energy experts’ observations in the residential sector. We show the impact of different social factors, such as individual sensitivity to price or to personal comfort, on the apparition of peaks on the consumption. We illustrate the contribution of multi-level modeling in the understanding of macroscopic phenomena.

References

  1. Alfakara, A. and Croxford, B. (2014). Using agent-based modelling to simulate occupants' behaviours in response to summer overheating. In Proceedings of the Symposium on Simulation for Architecture & Urban Design, page 13. Society for Computer Simulation International.
  2. Amouroux, E., Huraux, T., Sempe, F., Sabouret, N., and Haradji, Y. (2013). Simulating human activities to investigate household energy consumption. In Proc. of the 5th International Conference on Agents and Artificial Intelligence (ICAART).
  3. Camus, B., Bourjot, C., and Chevrier, V. (2013). Multilevel modeling as a society of interacting models. In Proceedings of the Agent-Directed Simulation Symposium, page 3. Society for Computer Simulation International.
  4. FIPA consortium (2003). FIPA Communicative Act Library Specification and FIPA ACL Message Structure Specification. Technical report, Foundation for intelligent physical agents.
  5. Gargiulo, F., Ternes, S., Huet, S., and Deffuant, G. (2010). An iterative approach for generating statistically realistic populations of households. PloS one, 5(1):e8828.
  6. Grandjean, A. (2013). Introduction de non linéarités et non stationnarités dans les modèles de représentation de la demande électrique résidentielle. PhD thesis, Thèse de doctorat, Mines Paristech.
  7. Haradji, Y., Poizat, G., and Sempé, F. (2012). Human Activity and Social Simulation, pages 416-425. CRC Press.
  8. Huraux, T., Sabouret, N., and Haradji, Y. (2014). A MultiLevel Model for Multi-Agent Based Simulation. In Proc. of the 6th International Conference on Agents and Artificial Intelligence (ICAART), Angers, France.
  9. Kashif, A., Ploix, S., Dugdale, J., and Le, X. H. B. (2012). Simulating the dynamics of occupant behaviour for power management in residential buildings. Energy and Buildings (online pre-print).
  10. Kubera, Y., Mathieu, P., and Picault, S. (2011). Ioda: an interaction-oriented approach for multi-agent based simulations. Autonomous Agents and Multi-Agent Systems, 23(3):303-343.
  11. Lee, Y. S., Yi, Y. K., and Malkawi, A. (2011). Simulating Human Behaviour and its Impact on Energy Uses. In Proc. of the 12th Conference of International Building Performance Simulation Association (IBPSA), pages 1049-1056.
  12. Minar, N., Burkhart, R., Langton, C., and Askenazi, M. (1996). The swarm simulation system : a toolkit for building multi-agent simulations. GEMAS Studies in Social Analysis, Working Paper 96-06-042.
  13. Morley, J. and Hazas, M. (2011). The significance of difference: Understanding variation in household energy consumption. ECEEE Proceedings of the 2011 Summer Study.
  14. Morvan, G. (2012). Multi-level agent-based modelingbibliography. Technical report, LGI2A, Univ. Artois, France.
  15. Morvan, G., Veremme, A., and Dupont, D. (2011). Irm4mls: the influence reaction model for multilevel simulation. In Multi-Agent-Based Simulation XI, pages 16-27. Springer Berlin Heidelberg.
  16. Muratori, M., Roberts, M. C., Sioshansi, R., Marano, V., and Rizzoni, G. (2013). A highly resolved modeling technique to simulate residential power demand. Applied Energy, 107:465-473.
  17. Navarro, L., Flacher, F., and Corruble, V. (2011). Dynamic level of detail for large scale agent-based urban simulations. Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011), pages 701- 708.
  18. Picault, S., Mathieu, P., et al. (2011). An interactionoriented model for multi-scale simulation. In IJCAI Proceedings-International Joint Conference on Artificial Intelligence, volume 22, page 332.
  19. Rao, A. S., Georgeff, M. P., et al. (1995). Bdi agents: From theory to practice. In ICMAS, volume 95, pages 312- 319.
  20. Relieu, M., Salembier, P., and Theureau, J. (2004). Introduction au numéro spécial activité et action/cognition située. Activités, 1(2):3-10.
  21. van Hoof, J. (2008). Forty years of Fanger's model of thermal comfort: comfort for all? Indoor Air, 18(3):182- 201.
  22. Yang, R. and Wang, L. (2013). Development of multi-agent system for building energy and comfort management based on occupant behaviors. Energy and Buildings, 56:1-7.
  23. Zélem, M.-C. (2013). Le confort thermique, norme technique ou norme sociale ? Débat National sur la Transition Energétique, Note 12.
  24. Zhou, Z., Chan, W. K. V., and Chow, J. H. (2007). Agentbased simulation of electricity markets: a survey of tools. Artificial Intelligence Review, 28(4):305-342.
Download


Paper Citation


in Harvard Style

Huraux T., Sabouret N. and Haradji Y. (2015). Study of Human Activity Related to Residential Energy Consumption Using Multi-level Simulations . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-758-073-4, pages 133-140. DOI: 10.5220/0005197401330140


in Bibtex Style

@conference{icaart15,
author={Thomas Huraux and Nicolas Sabouret and Yvon Haradji},
title={Study of Human Activity Related to Residential Energy Consumption Using Multi-level Simulations},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2015},
pages={133-140},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005197401330140},
isbn={978-989-758-073-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - Study of Human Activity Related to Residential Energy Consumption Using Multi-level Simulations
SN - 978-989-758-073-4
AU - Huraux T.
AU - Sabouret N.
AU - Haradji Y.
PY - 2015
SP - 133
EP - 140
DO - 10.5220/0005197401330140