New Visualization Model for Large Scale Biosignals Analysis

Catarina Cavaco, Ricardo Gomes, Hugo Gamboa, Ricardo Matias


The development of new resources in the medical field, such as wearable sensors, allowed the improvement of biosignals monitoring. Acquired data is then an important source of information to clinicians and researchers. Thus, extracting useful information from data is a task of the greatest importance that involves a variety of concepts and methods, from which stands out data visualization. However, these methods present several limitations mainly when dealing with big data. In this paper we present an innovative web-based application for biosignals visualization and exploration in a fast and user friendly way overcoming the detected limitations. Three case studies are presented and a usability study supports the reliability of the implemented work.


  1. ActiGraph, S. D. (2012). ActiLife 6 users manual.
  2. Aigner, W., Miksch, S., Schumann, H., and Tominski, C. (2011). Visualization of Time-Oriented Data. Springer, 1 edition.
  3. Arjunan, S. P., Kumar, D., Wheeler, K., Shimada, H., and Naik, G. (2011). Spectral properties of surface EMG and muscle conduction velocity: A study based on sEMG model. In Biosignals and Biorobotics Conference (BRC), 2011 ISSNIP, page 14. IEEE.
  4. Beazley, D. M. (2009). Python Essential Reference. Developer's Library. Pearson Education, 4 edition.
  5. Brooke, J. (2013). SUS: a retrospective. Journal of Usability Studies, 8(2):29-40.
  6. Carus, J. L., Pelaez, V., Garcia, S., Fernandez, M. A., Diaz, G., and Alvarez, E. (2013). A non-invasive and autonomous physical activity measurement system for the elderly. pages 619-624. IEEE.
  7. Duckett, J. (2014). JavaScript and JQuery: Interactive Front-End Web Development. John Wiley & Sons, 1 edition.
  8. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet : Components of a new research resource for complex physiologic signals. Circulation, 101(23):e215-e220.
  9. Gomes, R., Nunes, N., Sousa, J., and Gamboa, H. (2012). Long term biosignals visualization and processing. In BIOSIGNALS, pages 402-405.
  10. Goya-Esteban, R., Mora-Jimenez, I., Rojo-Alvarez, J. L., Barquero-Prez, O., Manzano-Martinez, S., PastorPrez, F., Pascual-Figal, D., and Garcia-Alberola, A. (2009). Rhythmometric analysis of heart rate variability indices during long term monitoring. In Computers in Cardiology, 2009, page 5760. IEEE.
  11. Heer, J., Kong, N., and Agrawala, M. (2009). Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 1303-1312.
  12. Hilbel, T., Lux, R. L., Dietzsch, J., Schliephake, M., and Katus, H. A. (2008). Performance and productivity benefits using multi-core processors for the analysis of digital long-term ECG recordings. In Computers in Cardiology, 2008, pages 1069-1072. IEEE.
  13. Hudson, D. L. and Cohen, M. E. (2006). Intelligent analysis of biosignals. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, pages 323-326.
  14. Iliinsky, N. P. N. and Steele, J. (2011). Designing data visualizations. O'Reilly, Farnham.
  15. Jung, H.-C., Moon, J.-H., Baek, D.-H., Lee, J.-H., Choi, Y.- Y., Hong, J.-S., and Lee, S.-H. (2012). CNT/PDMS composite flexible dry electrodesfor long-term ECG monitoring. IEEE Transactions on Biomedical Engineering, 59(5):1472-1479.
  16. Kaniusas, E. (2012). Fundamentals of biosignals. In Biomedical Signals and Sensors I, Biological and Medical Physics, Biomedical Engineering, pages 1- 26. Springer Berlin Heidelberg.
  17. Lan, C.-C., Hsueh, Y.-H., and Hu, R.-Y. (2012). Real-time fall detecting system using a tri-axial accelerometer for home care. pages 1077-1080. IEEE.
  18. Machado, I., Gomes, R., Gamboa, H., and Paixa˜o, V. (2014). Human activity recognition from triaxial accelerometer data. In BIOSIGNALS.
  19. Munzner, T. (2009). Visualization. In Fundamentals of Computer Graphics, pages 675-720.
  20. Murray, S. (2013). Interactive data visualization for the web: [an introduction to designing with D3]. O'Reilly, Sebastopol, CA.
  21. Neophytou, N., Kyriakides, A., and Pitris, C. (2012). ECG analysis in the time-frequency domain. In Bioinformatics & Bioengineering (BIBE), 2012 IEEE 12th International Conference on, page 8084. IEEE.
  22. Pakhira, M. (2010). Requirements of a graphical system. In Computer Graphics Multimedia and Animation. PHI Learning Pvt. Ltd., 2nd edition.
  23. PLUX, w. b. S. (2014). biosignalsplux.
  24. Soares, S. B., Coelho, R. R., and Nadal, J. (2013). The use of cross correlation function in onset detection of electromyographic signals. In Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP, pages 1-5. IEEE.
  25. Van Wijk, J. J. (2005). The value of visualization. In Visualization, 2005. VIS 05. IEEE, pages 79-86.
  26. Welch Allyn (2007). Expert holter software system - directions for use.
  27. West, B. (2013). Fractal Physiology and Chaos in Medicine. World Scientific, 2 edition.

Paper Citation

in Harvard Style

Cavaco C., Gomes R., Gamboa H. and Matias R. (2015). New Visualization Model for Large Scale Biosignals Analysis . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 190-197. DOI: 10.5220/0005207201900197

in Bibtex Style

author={Catarina Cavaco and Ricardo Gomes and Hugo Gamboa and Ricardo Matias},
title={New Visualization Model for Large Scale Biosignals Analysis},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},

in EndNote Style

JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - New Visualization Model for Large Scale Biosignals Analysis
SN - 978-989-758-069-7
AU - Cavaco C.
AU - Gomes R.
AU - Gamboa H.
AU - Matias R.
PY - 2015
SP - 190
EP - 197
DO - 10.5220/0005207201900197