Alignment of Cyclically Ordered Trees

Takuya Yoshino, Kouichi Hirata


In this paper, as unordered trees preserving the adjacency among siblings, we introduce the following three kinds of a cyclically ordered tree, that is, a biordered tree that allows both a left-to-right and a right-to-left order among siblings, a cyclic-ordered tree that allows cyclic order among siblings in a left-to-right direction and a cyclic-biordered tree that allows cyclic order among siblings in both left-to-right and right-to-left directions. Then, we design the algorithms to compute the alignment distance and the segmental alignment distance between biordered trees in O(n2D2) time and ones between cyclic-ordered trees and cyclic-biordered trees in O(n2D4) time, where n is the maximum number of nodes and D is the maximum degree in two given trees.


  1. Chawathe, S. S. (1999). Comparing hierarchical data in external memory. In Proc. VLDB'99, pages 90-101.
  2. Demaine, E. D., Mozes, S., Rossman, B., and Weimann, O. (2009). An optimal decomposition algorithm for tree edit distance. ACM Trans. Algo., 6.
  3. Hirata, K., Yamamoto, Y., and Kuboyama, T. (2011). Improved MAX SNP-hard results for finding an edit distance between unordered trees. In Proc. CPM'11 (LNCS 6661), pages 402-415.
  4. Hizukuri, Y., Yamanishi, T., Nakamura, O., Yagi, F., Goto, S., and Kanehisa, M. (2005). Extraction of leukemia specific glycan motifs in humans by computational glycomics. Carbohydrate Research, 340:2270-2278.
  5. (2003). Local similarity in RNA secondary structures.
  6. In Proc. CSB'03, pages 159-168.
  7. Horváth, T., Ramon, J., and Wrobel, S. (2010). Frequent subgraph mining in outerplanar graphs. Data Min. Knowl. Disc., 21:472-508.
  8. Jiang, T., Wang, L., and Zhang, K. (1995). Alignment of trees - an alternative to tree edit. Theoret. Comput. Sci., 143:137-148.
  9. Kan, T., Higuchi, S., and Hirata, K. (2014). Segmental mapping and distance for rooted ordered labeled trees. Fundamenta Informaticae, 132:1-23.
  10. Kuboyama, T. (2007). Matching and learning in trees. Ph.D thesis, University of Tokyo.
  11. Lu, C. L., Su, Z.-Y., and Yang, C. Y. (2001). A new measure of edit distance between labeled trees. In Proc. COCOON'01 (LNCS 2108), pages 338-348.
  12. Lu, S.-Y. (1979). A tree-to-tree distance and its application to cluster analysis. IEEE Trans. Pattern Anal. Mach. Intell., 1:219-224.
  13. Schiermer, S. and Giegerich, R. (2013). Forest alignment with affine gaps and anchors, applied in RNA structure comparison. Theoret. Comput. Sci., 483:51-67.
  14. Selkow, S. M. (1977). The tree-to-tree editing problem. Inform. Process. Lett., 6:184-186.
  15. Shapiro, B. A. and Zhang, K. (1990). Comparing multiple RNA secondary structures using tree comparision. Comp. Appl. Biosci., 6:309-318.
  16. Tai, K.-C. (1979). The tree-to-tree correction problem. J. ACM, 26:422-433.
  17. Valiente, G. (2001). An efficient bottom-up distance between trees. In Proc. SPIRE'01, pages 212-219.
  18. Wang, Y., DeWitt, D. J., and Cai, J.-Y. (2003). X-Diff: An effective change detection algorithm for XML documents. In Proc. ICDE'03, pages 519-530.
  19. Yamamoto, Y., Hirata, K., and Kuboyama, T. (2014). Tractable and intractable variations of unordered tree edit distance. Internat. J. Found. Comput. Sci., 25:307-329.
  20. Yoshino, T. and Hirata, K. (2013). Hierarchy of segmental and alignable mapping for rooted labeled trees. In Proc. DDS'13, pages 62-69.
  21. Zhang, K. (1995). Algorithms for the constrained editing distance between ordered labeled trees and related problems. Pattern Recog., 28:463-474.
  22. Zhang, K. (1996). A constrained edit distance between unordered labeled trees. Algorithmica, 15:205-222.
  23. Zhang, K. (1998). Computing similarity between RNA secondary structures. In Proc. IEEE Internat. Joint Symp. Intell. Sys., pages 126-132.
  24. Zhang, K. and Jiang, T. (1994). Some MAX SNP-hard results concerning unordered labeled trees. Inform. Process. Lett., 49:249-254.
  25. Zhang, K., Wang, J., and Shasha, D. (1996). On the editing distance between undirected acyclic graphs. Internat. J. Found. Comput. Sci., 7:43-58.

Paper Citation

in Harvard Style

Yoshino T. and Hirata K. (2015). Alignment of Cyclically Ordered Trees . In Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-076-5, pages 263-270. DOI: 10.5220/0005207802630270

in Bibtex Style

author={Takuya Yoshino and Kouichi Hirata},
title={Alignment of Cyclically Ordered Trees},
booktitle={Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},

in EndNote Style

JO - Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Alignment of Cyclically Ordered Trees
SN - 978-989-758-076-5
AU - Yoshino T.
AU - Hirata K.
PY - 2015
SP - 263
EP - 270
DO - 10.5220/0005207802630270