Arousal Recognition Method using Electroencephalography Signals to Construct Emotional Database

Yujun Niu, Hao Zhang, Shin'ichi Warisawa, Ichiro Yamada

Abstract

Improving arousal recognition accuracy by using EEG signals is important for emotion recognition. In this research, discrete wavelet transform is used to extract features, and a cross-level method is adopted to select effective features. The cross-level method shows great potential for two-level arousal classification, and the recognition accuracy reaches 91.8%. The sensitivity of EEG channels is also discussed based on two ranking methods of SCP (single-channel performance) and ANOVA (analysis of variance). Finally, arousal recognition method based on EEG signals is applied to construct a Japanese emotion database.

References

  1. Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. 2004. Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology. 34(8). pp.859-867.
  2. Ekman, P., Friesen. W. V., & Ellsworth. P. 1972. Emotion in the human face: Guidelines for research and an integration of findings. New York: Pergamon Press.
  3. Hosseini, S. A., & Naghibi-Sistani. M. B. 2011. Emotion recognition method using entropy analysis of EEG signals. I. J. Image, Graphics and Signal Processing. 3(5). pp.30-36.
  4. Lane, R. D., & Jennings, J. R. 1995. Hemispheric asymmetry, autonomic asymmetry, and the problem of sudden cardiac death. In R.J. Davidson, & K. Hugdahl (Eds), Brain asymmetry. pp. 271-304. Cambridge, MA: MIT Press.
  5. Lang, Peter J., Bardley, Margaret M., Fitzismmons, Jeffrey R., Cuthbert, Bruce N., Scott, James D., Moulder, B., & Nangia, V. 1998. Emotional arousal and activation of the visual cortex: An fMRI analysis: Psychophysiology. 35. pp. 199-210.
  6. Liu, Y., & Sourina, O. 2012. EEG-based Valence Level Recognition for Real-Time Applications. International conference on Cyberworlds. pp.53-60.
  7. Murugappan, M., Rizon, M., RNagarajan, Yaacob, S., Zunaidi, I., &Hazry, D. 2007. EEG Feature Extraction for Classifying Emotions using FCM and FKM. International Journal of Computers and Communications. 2(1). pp. 21-25.
  8. Musha, T., Terasaki, Y., Haque, Hasnine A., & Ivanitsky, George A. 1997. Feature Extraction from EEGs Associated with Emotions. Artif Life Robotics. 1(1). pp.15-19.
  9. Russell, James A. 1980. A Circumplex Model of Affect. Journal of Personality and Social Psychology. 39(6). pp.1161-1178.
  10. Sander, D., Grandjean, D., & Scherer, K. R. 2005. A systems approach to appraisal mechanisms in emotion. Neural Networks. 18. pp. 317-352.
  11. Soleymani, M., Lichtenauer, J., Pun, T., & Pantic, M. 2012. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Transactions on Affective Computing. 3(1). pp.42-55.
  12. Wittling, W. 1995. Brain asymmetry in the control of autonomic-physiologic activity. In R.J. Davidson, & K. Hugdahl (Eds), Brain asymmetry. pp. 305-357. Cambridge, MA: MIT Press.
  13. Yoon, H. J., & Chung, S. Y. 2011. EEG Spectral Analysis in Valence and Arousal Dimensions of Emotion. 11th International Conference on Control, Automation and Systems. pp.1319-1322.
  14. Zhang, H., Warisawa, S., & Yamada, I. 2014. Emotional Valence Detection based on a Novel Wavelet Feature Extraction Strategy using EEG signals. 7th International Conference on Health Informatics. pp.52-59.
Download


Paper Citation


in Harvard Style

Niu Y., Zhang H., Warisawa S. and Yamada I. (2015). Arousal Recognition Method using Electroencephalography Signals to Construct Emotional Database . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015) ISBN 978-989-758-068-0, pages 360-366. DOI: 10.5220/0005208403600366


in Bibtex Style

@conference{healthinf15,
author={Yujun Niu and Hao Zhang and Shin'ichi Warisawa and Ichiro Yamada},
title={Arousal Recognition Method using Electroencephalography Signals to Construct Emotional Database},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)},
year={2015},
pages={360-366},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005208403600366},
isbn={978-989-758-068-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)
TI - Arousal Recognition Method using Electroencephalography Signals to Construct Emotional Database
SN - 978-989-758-068-0
AU - Niu Y.
AU - Zhang H.
AU - Warisawa S.
AU - Yamada I.
PY - 2015
SP - 360
EP - 366
DO - 10.5220/0005208403600366