Targeted Radiation Dipole Antenna using 3D Numerical Simulation in Microwave Ablation

Hussein Alnassan, Adrian Kastler, Xia Wang, Bruno Kastler

Abstract

Microwave ablation technology is being utilised in several medical applications for ablation therapy and other applications. Microwave energy generates fast and high temperatures sufficient and capable to produce coagulation necrosis. Theoretical models by numerical simulation of microwave ablation is a distinct step in the implementation of system design, as well as in the results analysis before the ablation procedure. Furthermore, these models play a role in design the microwave antennas. Classic microwave ablation antenna around its radiating section applies electromagnetic field in tumors without worry about near neural structures. This paper presents the temperature distributions of targeted radiation dipole antenna model with active and non-active sides for microwave ablation at 2.45GHz at different powers and ablation times. Temperature maps and SAR distributions around the radiating section show in two sides.

References

  1. Brace, Christopher L. 2009. “Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?” Current Problems in Diagnostic Radiology 38 (3): 135-43. doi:10.1067/ j.cpradiol.2007.10.001.
  2. Brace, Christopher L., Paul F. Laeseke, Lisa A. Sampson, Tina M. Frey, Daniel W. van der Weide, and Fred T. Lee. 2007. “Microwave Ablation with a Single SmallGauge Triaxial Antenna: In Vivo Porcine Liver Model.” Radiology 242 (2): 435-40. doi:10.1148/ radiol.2422051411.
  3. Castle, Scott M., Nelson Salas, and Raymond J. Leveillee. 2011. “Initial Experience Using Microwave Ablation Therapy for Renal Tumor Treatment: 18-Month Follow-Up.” Urology 77 (4): 792-97. doi:10.1016/ j.urology.2010.12.028.
  4. Cavagnaro, Marta, Claudio Amabile, Paolo Bernardi, Stefano Pisa, and Nevio Tosoratti. 2011. “A Minimally Invasive Antenna for Microwave Ablation Therapies: Design, Performances, and Experimental Assessment.” IEEE Transactions on Bio-Medical Engineering 58 (4): 949-59. doi:10.1109/TBME. 2010.2099657.
  5. Chiang, Jason, Peng Wang, and Christopher L. Brace. 2013. “Computational Modelling of Microwave Tumour Ablations.” International Journal of Hyperthermia 29 (4): 308-17. doi:10.3109/ 02656736.2013.799295.
  6. “DIRECTIVE WINDOW ABLATION ANTENNA WITH DIELECTRIC LOADING - Patent - Europe PubMed Central.” 2014. Accessed August 4. http://europepmc.org/patents/PAT/CA2711827.
  7. Hurter, W., F. Reinbold, and W.J. Lorenz. 1991. “A Dipole Antenna for Interstitial Microwave Hyperthermia.” IEEE Transactions on Microwave Theory and Techniques 39 (6): 1048-54. doi:10.1109/22.81680.
  8. Ito, K., K. Saito, H. Yoshimura, Y. Aoyagi, and H. Horita. 2004. “Coaxial-Slot Antenna for Interstitial Microwave Thermal Therapy and Its Application to Clinical Trial.” Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 4: 2526- 29. doi:10.1109/IEMBS.2004.1403727.
  9. Kastler, Adrian, Hussein Alnassan, Sébastien Aubry, and Bruno Kastler. 2014. “Microwave Thermal Ablation of Spinal Metastatic Bone Tumors.” Journal of Vascular and Interventional Radiology 0 (0). Accessed August 4. doi:10.1016/j.jvir.2014.06.007.
  10. Kastler, Adrian, Hussein Alnassan, Philippe L. Pereira, Guillaume Alemann, Daniel-Ange Barbé, Sébastien Aubry, Florence Tiberghien, and Bruno Kastler. 2013. “Analgesic Effects of Microwave Ablation of Bone and Soft Tissue Tumors Under Local Anesthesia.” Pain Medicine 14 (12): 1873-81. doi:10.1111/ pme.12242.
  11. Kuang, Ming, Ming D. Lu, Xiao Y. Xie, Hui X. Xu, Li Q. Mo, Guang J. Liu, Zuo F. Xu, Yan L. Zheng, and Jin Y. Liang. 2007. “Liver Cancer: Increased Microwave Delivery to Ablation Zone with Cooled-Shaft Antenna--Experimental and Clinical Studies.” Radiology 242 (3): 914-24. doi:10.1148/radiol. 2423052028.
  12. Labonte, S., A. Blais, S.R. Legault, H.O. Ali, and L. Roy. 1996. “Monopole Antennas for Microwave Catheter Ablation.” IEEE Transactions on Microwave Theory and Techniques 44 (10): 1832-40. doi:10.1109/ 22.539941.
  13. Lin, J. C., and Y. J. Wang. 1996. “The Cap-Choke Catheter Antenna for Microwave Ablation Treatment.” IEEE Transactions on Bio-Medical Engineering 43 (6): 657-60. doi:10.1109/10.495286.
  14. Lubner, Meghan G., Christopher L. Brace, J. Louis Hinshaw, and Fred T. Lee. 2010. “Microwave Tumor Ablation: Mechanism of Action, Clinical Results, and Devices.” Journal of Vascular and Interventional Radiology: JVIR 21 (8 Suppl): S192-203. doi:10.1016/j.jvir.2010.04.007.
  15. Thaiwat, K., P. Nantivatana, P. Phasukkit, S. Tungjitkusolmun, and M. Sangworasil. 2011. “Comparision of Open Slot Angle for Asymmetry Slot Antenna Using 3D Finite Element Method.” In Biomedical Engineering International Conference (BMEiCON), 2011, 100-103. doi:10.1109/BMEiCon. 2012.6172028.
  16. Wolf, Farrah J., David J. Grand, Jason T. Machan, Thomas A. Dipetrillo, William W. Mayo-Smith, and Damian E. Dupuy. 2008. “Microwave Ablation of Lung Malignancies: Effectiveness, CT Findings, and Safety in 50 Patients.” Radiology 247 (3): 871-79. doi:10.1148/radiol.2473070996.
  17. Yang, Deshan, John M. Bertram, Mark C. Converse, Ann P. O'Rourke, John G. Webster, Susan C. Hagness, James A. Will, and David M. Mahvi. 2006. “A Floating Sleeve Antenna Yields Localized Hepatic Microwave Ablation.” IEEE Transactions on BioMedical Engineering 53 (3): 533-37. doi:10.1109/ TBME.2005.869794.
Download


Paper Citation


in Harvard Style

Alnassan H., Kastler A., Wang X. and Kastler B. (2015). Targeted Radiation Dipole Antenna using 3D Numerical Simulation in Microwave Ablation . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 44-48. DOI: 10.5220/0005209900440048


in Bibtex Style

@conference{biodevices15,
author={Hussein Alnassan and Adrian Kastler and Xia Wang and Bruno Kastler},
title={Targeted Radiation Dipole Antenna using 3D Numerical Simulation in Microwave Ablation},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)},
year={2015},
pages={44-48},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005209900440048},
isbn={978-989-758-071-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)
TI - Targeted Radiation Dipole Antenna using 3D Numerical Simulation in Microwave Ablation
SN - 978-989-758-071-0
AU - Alnassan H.
AU - Kastler A.
AU - Wang X.
AU - Kastler B.
PY - 2015
SP - 44
EP - 48
DO - 10.5220/0005209900440048