Application of a MEMS Blood Flowmeter for Power Spectrum Analysis of Heart Rate Variability

Terukazu Akiyama, Tatsuya Miyazaki, Hiroki Ito, Hirofumi Nogami, Renshi Sawada

Abstract

We investigated the possibility of applying a MEMS blood flowmeter to heart rate variability (HRV) analysis. We conducted simultaneous measurements of HRV by electrocardiogram and MEMS blood flowmeter. TPP for the MEMS blood flowmeter was defined as the interval between peaks, which were designated as where the first-order differential of the signal changes from negative to positive. TRR (i.e., the R-R interval of the electrocardiogram) and TPP were compared by regression analysis. Autonomic indices transformed by power spectrum analysis were also compared by regression analysis. Fast Fourier transform (FFT) and maximum entropy method (MEM) were employed in the frequency analysis. By FFT analysis, the coefficient of determination for the regression between LF%, HF%, and LF/HF derived by TRR versus TPP was 0.8781, 0.8781, and 0.8946, respectively. By MEM analysis, the coefficient of determination for the regression between LF%, HF%, and LF/HF derived by TRR versus TPP was 0.9649, 0.8026, and 0.9181, respectively. These high correlations suggest that the TPP of the MEMS blood flowmeter is a reliable metric that can be utilized in applications of HRV analysis.

References

  1. Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. science, 213(4504), 220-222.
  2. Pomeranz, B., Macaulay, R. J., Caudill, M. A., Kutz, I., Adam, D., Gordon, D. A. V. I. D., ... & Cohen, R. J. (1985). Assessment of autonomic function in humans by heart rate spectral analysis. American Journal of Physiology-Heart and Circulatory Physiology, 248(1), H151-H153.
  3. Stys, A., & Stys, T. (1998). Current clinical applications of heart rate variability. Clinical cardiology, 21(10), 719-724.
  4. Higurashi, E., Sawada, R., & Ito, T. (2003). An integrated laser blood flowmeter. Journal of lightwave technology, 21(3), 591.
  5. Kimura, Y., Goma, M., Onoe, A., Higurashi, E., & Sawada, R. (2010). Integrated laser Doppler blood flowmeter designed to enable wafer-level packaging. Biomedical Engineering, IEEE Transactions on, 57(8), 2026-2033.
  6. Takada, M., Ebara, T., & Sakai, Y. (2008). The acceleration plethysmography system as a new physiological technology for evaluating autonomic modulations. Health evaluation and promotion, 35(4), 373-377.
  7. Bonner, R., & Nossal, R. (1981). Model for laser Doppler measurements of blood flow in tissue. Applied optics, 20(12), 2097-2107.
  8. Fredriksson, I., Fors, C., & Johansson, J. (2007). Laser doppler flowmetry-a theoretical framework. Department of Biomedical Engineering, Linköping University.
  9. Rowell, L. B. (1986). Human circulation: regulation during physical stress (p. 215). Oxford: Oxford University Press.
  10. Smith, J. J. (1990). Circulatory response to the upright posture (No. 6). CRC Press.
  11. Yamamoto, Y., & Hughson, R. L. (1991). Coarse-graining spectral analysis: for studying heart rate variability.
  12. Penaz, J. (1978). Mayer waves: history and methodology. Automedica, 2(3), 135-142.
  13. Söderström, T., Stefanovska, A., Veber, M., & Svensson, H. (2003). Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. American Journal of Physiology-Heart and Circulatory Physiology, 284(5), H1638-H1646.
  14. Nogami, H., Iwasaki, W., Abe, T., Kimura, Y., Onoe, A., Higurashi, E., ... & Sawada, R. (2011). Use of a simple arm-raising test with a portable laser Doppler blood flow meter to detect dehydration. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225(4), 411-419.
  15. Iwasaki, W., Nogami, H., Ito, H., Gotanda, T., Peng, Y., Takeuchi, S., ... & Sawada, R. (2012). Useful method to monitor the physiological effects of alcohol ingestion by combination of micro-integrated laser Doppler blood flow meter and arm-raising test. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(10), 759-765.
  16. Ogata, H., Fujimaru, I., Yamada, K., & Kondo, T. (2012). Suppression of cardiocirculatory responses to orthostatic stress by passive walking-like leg movement in healthy young men. J Physiol Anthropol, 31, 24.
  17. Hess, W. R. (1954). Diencephalon, autonomic and extrapyramidal functions (Vol. 3). Grune & Stratton.
  18. Ohhashi, T., Sakaguchi, M., & Tsuda, T. (1998). Human perspiration measurement. Physiological measurement, 19(4), 449.
  19. Homma, S., Nakajima, Y., Toma, S., Ito, T., & Shibata, T. (1998). Intracerebral source localization of mental process-related potentials elicited prior to mental sweating response in humans. Neuroscience letters, 247(1), 25-28.
  20. Tanaka, H., Yamaguchi, H., Matushima, R., & Tamai, H. (1999). Instantaneous orthostatic hypotension in children and adolescents: a new entity of orthostatic intolerance. Pediatric research, 46(6), 691-691.
  21. Low, P. A., Opfer-Gehrking, T. L., Textor, S. C., Benarroch, E. E., Shen, W. K., Schondorf, R., ... & Rummans, T. A. (1995). Postural tachycardia syndrome (POTS). Neurology, 45(4 Suppl 5), S19-25.
  22. Wheeler, T., & Watkins, P. J. (1973). Cardiac denervation in diabetes. British Medical Journal, 4(5892), 584.
  23. Oka, H., Mochio, S., Sato, K., Sato, H., Katayama, K., Watanabe, S., ... & Isogai, Y. (1995). Spectral analyses of RR interval and systolic blood pressure in diabetic autonomic neuropathy. Journal of the autonomic nervous system, 52(2), 203-211.
  24. Bonner, R. F., Clem, T. R., Bowen, P. D., & Bowman, R. L. (1981). Laser-Doppler continuous real-time monitor of pulsatile and mean blood flow in tissue microcirculation. In Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems (pp. 685-701). Springer US.
  25. Kano, T., Shimoda, O., Higashi, K., Sadanaga, M., & Sakamoto, M. (1993). Fundamental patterns and characteristics of the laser-Doppler skin blood flow waves recorded from the finger or toe. Journal of the autonomic nervous system, 45(3), 191-199.
  26. Abe, M., Ando, Y., Higashi, K., & Kano, T. (1996). Nonneurogenic periodic fluctuations in heart rate and vasomotion appearing in familial amyloid polyneuropathy (FAP) Type I (Met30). Journal of the autonomic nervous system, 60(1), 71-75.
  27. Ide, J., Yamaga, M., Kitamura, T., & Takagi, K. (1997). Quantitative evaluation of sympathetic nervous system dysfunction in patients with reflex sympathetic dystrophy. The Journal of Hand Surgery: British & European Volume, 22(1), 102-106.
  28. Ando, Y., Araki, S., Shimoda, O., & Kano, T. (1992). Role of autonomic nerve functions in patients with familial amyloidotic polyneuropathy as analyzed by laser Doppler flowmetry, capsule hydrograph, and cardiographic R-R interval. Muscle & nerve, 15(4), 507-512.
  29. Mano, T. (1990). Sympathetic nerve mechanisms of human adaptation to environment-findings obtained by recent microneurographic studies. Environ. Med, 34, 1-35.
Download


Paper Citation


in Harvard Style

Akiyama T., Miyazaki T., Ito H., Nogami H. and Sawada R. (2015). Application of a MEMS Blood Flowmeter for Power Spectrum Analysis of Heart Rate Variability . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 211-218. DOI: 10.5220/0005213302110218


in Bibtex Style

@conference{biosignals15,
author={Terukazu Akiyama and Tatsuya Miyazaki and Hiroki Ito and Hirofumi Nogami and Renshi Sawada},
title={Application of a MEMS Blood Flowmeter for Power Spectrum Analysis of Heart Rate Variability},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},
year={2015},
pages={211-218},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005213302110218},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - Application of a MEMS Blood Flowmeter for Power Spectrum Analysis of Heart Rate Variability
SN - 978-989-758-069-7
AU - Akiyama T.
AU - Miyazaki T.
AU - Ito H.
AU - Nogami H.
AU - Sawada R.
PY - 2015
SP - 211
EP - 218
DO - 10.5220/0005213302110218