Coupling of Self-activating Genes Induces Spontaneous Synchronized Oscillations in Cells

Jesus Miro-Bueno

Abstract

Genetic oscillators are present in a wide range of organisms from bacteria to neurons and coordinate important biological functions. Current models of genetic oscillators are based on auto-repressed genes. In these models a gene produces a repressor protein that binds to the promoter of its own gene repressing the transcription. Different versions of these models have been studied in living organisms and for engineering synthetic clocks. Synchronization of genetic clocks based on this model has also been studied. However, genes with positive feedbacks are also present in natural and synthetic genetic clocks. These self-activating genes provide robustness and frequency tuning to genetic clocks. In this paper we show a novel role of self-activating genes. We demonstrate that the coupling of self-activating genes by small molecules in a cell population produces synchronized oscillations. Our model could be useful for engineering new robust multicellular clocks and better understanding of natural genetic oscillators.

References

  1. Atkinson, M. R., Savageau, M. A., Myers, J. T., and Ninfa, A. J. (2003). Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia Coli. Cell, 113(5):597-607.
  2. Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R., and You, L. (2008). A synthetic escherichia coli predator-prey ecosystem. Molecular systems biology, 4(1).
  3. Barkai, N. and Leibler, S. (2000). Circadian clocks limited by noise. Nature, 403(6767):267-268.
  4. Becskei, A., Seraphin, B., and Serrano, L. (2001). Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. The EMBO Journal, 20(10):2528-2535.
  5. Conrad, E., Mayo, A. E., Ninfa, A. J., and Forger, D. B. (2008). Rate constants rather than biochemical mechanism determine behaviour of genetic clocks. Journal of the Royal Society Interface, 5(supp1):S9-S15.
  6. Danino, T., Mondragon-Palomino, O., Tsimring, L., and Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463(7279):326-330.
  7. Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767):335-338.
  8. Ferrell Jr., J. E. (2002). Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Current Opinion in Cell Biology, 14(2):140-148.
  9. Franc¸ois, P. (2005). A model for the Neurospora circadian clock. Biophysical Journal, 88:2369-2383.
  10. Fung, E., Wong, W. W., Suen, J. K., Bulter, T., Lee, S., and Liao, J. C. (2005). A synthetic gene-metabolic oscillator. Nature, 435(7038):118-122.
  11. Gallego, M. and Virshup, D. M. (2007). Post-translational modifications regulate the ticking of the circadian clock. Nature Reviews Molecular Cell Biology, 8(2):139-148.
  12. Garcia-Ojalvo, J., Elowitz, M. B., and Strogatz, S. H. (2004). Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proceedings of the National Academy of Sciences, 101(30):10955- 10960.
  13. Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767):339-342.
  14. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340-2361.
  15. Guantes, R. and Poyatos, J. F. (2006). Dynamical principles of two-component genetic oscillators. PLoS Computational Biology, 2(3):e30.
  16. Hasty, J., Isaacs, F., Dolnik, M., McMillen, D., and Collins, J. J. (2001). Designer gene networks: Towards fundamental cellular control. Chaos, 11(1):207-220.
  17. Hong, C. I., Jolma, I. W., Loros, J. J., Dunlap, J. C., and Ruoff, P. (2008). Simulating dark expressions and interactions of frq and wc-1 in the Neurospora circadian clock. Biophysical Journal, 94(4):1221-1232.
  18. Keller, A. D. (1995). Model genetic circuits encoding autoregulatory transcription factors. Journal of Theoretical Biology, 172(2):169-185.
  19. Kim, J. and Winfree, E. (2011). Synthetic in vitro transcriptional oscillators. Molecular Systems Biology, 7.
  20. Krishna, S., Semsey, S., and Jensen, M. H. (2009). Frustrated bistability as a means to engineer oscillations in biological systems. Physical Biology, 6(3):036009.
  21. Lenz, P. and Søgaard-Andersen, L. (2011). Temporal and spatial oscillations in bacteria. Nature Reviews Microbiology, 9(8):565-577.
  22. McMillen, D., Kopell, N., Hasty, J., and Collins, J. (2002). Synchronizing genetic relaxation oscillators by intercell signaling. Proceedings of the National Academy of Sciences, 99(2):679-684.
  23. Miró-Bueno, J. M. and Rodríguez-Patón, A. (2011). A simple negative interaction in the positive transcriptional feedback of a single gene is sufficient to produce reliable oscillations. PLoS ONE, 6(11):e27414.
  24. Mitrophanov, A. Y. and Groisman, E. A. (2008). Positive feedback in cellular control systems. BioEssays, 30(6):542-555.
  25. Mohawk, J. A., Green, C. B., and Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annual review of neuroscience, 35:445.
  26. Mondragón-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L., and Hasty, J. (2011). Entrainment of a population of synthetic genetic oscillators. Science, 333(6047):1315-1319.
  27. Montagne, K., Plasson, R., Sakai, Y., Fujii, T., and Rondelez, Y. (2011). Programming an in vitro DNA oscillator using a molecular networking strategy. Molecular Systems Biology, 7.
  28. Munteanu, A., Constante, M., Isalan, M., and Sole, R. (2010). Avoiding transcription factor competition at promoter level increases the chances of obtaining oscillation. BMC Systems Biology, 4(1):66.
  29. Nandi, A., Vaz, C., Bhattacharya, A., and Ramaswamy, R. (2009). miRNA-regulated dynamics in circadian oscillator models. BMC Systems Biology, 3(1):45.
  30. Ng, W.-L. and Bassler, B. L. (2009). Bacterial quorumsensing network architectures. Annual review of genetics, 43:197-222.
  31. Novák, B. and Tyson, J. J. (2008). Design principles of biochemical oscillators. Nature Reviews Molecular Cell Biology, 9(12):981-991.
  32. O'Brien, E. L., Van Itallie, E., and Bennett, M. R. (2012). Modeling synthetic gene oscillators. Mathematical Biosciences, 236(1):1-15.
  33. Prindle, A., Selimkhanov, J., Li, H., Razinkov, I., Tsimring, L. S., and Hasty, J. (2014). Rapid and tunable posttranslational coupling of genetic circuits. Nature.
  34. Purcell, O., Savery, N. J., Grierson, C. S., and di Bernardo, M. (2010). A comparative analysis of synthetic genetic oscillators. Journal of the Royal Society Interface, 7(52):1503-1524.
  35. Rand, D. A., Shulgin, B. V., Salazar, D., and Millar, A. J. (2004). Design principles underlying circadian clocks. Journal of the Royal Society Interface, 1(1):119-130.
  36. Reppert, S. M. and Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418(6901):935-941.
  37. Rodrigo, G., Carrera, J., and Jaramillo, A. (2007). Evolutionary mechanisms of circadian clocks. Central European Journal of Biology, 2(2):233-253.
  38. Smolen, P., Baxter, D. A., and Byrne, J. H. (2000). Mathematical modeling of gene networks. Neuron, 26(3):567-580.
  39. Smolen, P., Baxter, D. A., and Byrne, J. H. (2001). Modeling circadian oscillations with interlocking positive and negative feedback loops. The Journal of Neuroscience, 21(17):6644-6656.
  40. Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., and Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456(7221):516-519.
  41. Tigges, M., Marquez-Lago, T. T., Stelling, J., and Fussenegger, M. (2009). A tunable synthetic mammalian oscillator. Nature, 457(7227):309-312.
  42. Toettcher, J. E., Mock, C., Batchelor, E., Loewer, A., and Lahav, G. (2010). A synthetic-natural hybrid oscillator in human cells. Proceedings of the National Academy of Sciences of the United States of America, 107(39):17047-17052.
  43. Tsai, T. Y., Choi, Y. S., Ma, W., Pomerening, J. R., Tang, C., and Ferrell, J. E. (2008). Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321(5885):126-129.
  44. Vilar, J. M. G., Kueh, H. Y., Barkai, N., and Leibler, S. (2002). Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences of the United States of America, 99(9):5988- 5992.
  45. Waters, C. M. and Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21:319-346.
  46. Weitz, M., Kim, J., Kapsner, K., Winfree, E., Franco, E., and Simmel, F. C. (2014). Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature chemistry.
  47. Welsh, D. K., Takahashi, J. S., and Kay, S. A. (2010). Suprachiasmatic nucleus: cell autonomy and network properties. Annual review of physiology, 72:551.
  48. Winfree, A. T. (2002). On emerging coherence. Science, 298(5602):2336-2337.
Download


Paper Citation


in Harvard Style

Miro-Bueno J. (2015). Coupling of Self-activating Genes Induces Spontaneous Synchronized Oscillations in Cells . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2015) ISBN 978-989-758-070-3, pages 121-127. DOI: 10.5220/0005216801210127


in Bibtex Style

@conference{bioinformatics15,
author={Jesus Miro-Bueno},
title={Coupling of Self-activating Genes Induces Spontaneous Synchronized Oscillations in Cells},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2015)},
year={2015},
pages={121-127},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005216801210127},
isbn={978-989-758-070-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2015)
TI - Coupling of Self-activating Genes Induces Spontaneous Synchronized Oscillations in Cells
SN - 978-989-758-070-3
AU - Miro-Bueno J.
PY - 2015
SP - 121
EP - 127
DO - 10.5220/0005216801210127