Evaluation Heuristics for Tug Fleet Optimisation Algorithms - A Computational Simulation Study of a Receding Horizon Genetic Algorithm

Robin T. Bye, Hans Georg Schaathun

Abstract

A fleet of tugs along the northern Norwegian coast must be dynamically positioned to minimise the risk of oil tanker drifting accidents. We have previously presented a receding horizon genetic algorithm (RHGA) for solving this tug fleet optimisation (TFO) problem. Here, we first present an overview of the TFO problem, the basics of the RHGA, and a set of potential cost functions with which the RHGA can be configured. The set of these RHGA configurations are effectively equivalent to a set of different TFO algorithms that each can be used for dynamic tug fleet positioning. In order to compare the merit of TFO algorithms that solve the TFO problem as defined here, we propose two evaluation heuristics and test them by means of a computational simulation study. Finally, we discuss our results and directions forward.

References

  1. Assimizele, B., Oppen, J., and Bye, R. T. (2013). A sustainable model for optimal dynamic allocation of patrol tugs to oil tankers. In Proceedings of the 27th European Conference on Modelling and Simulation, pages 801-807.
  2. Breivik, Ø. and Allen, A. (2008). An operational search and rescue model for the Norwegian Sea and the North Sea. Journal of Marine Systems, 69(1-2):99-113.
  3. Breivik, Ø., Allen, A., Maisondieu, C., and Roth, J. (2011). Wind-induced drift of objects at sea: The leeway field method. Applied Ocean Research, 33(2):100-109.
  4. Bye, R. T. (2012). A receding horizon genetic algorithm for dynamic resource allocation: A case study on optimal positioning of tugs. Series: Studies in Computational Intelligence, 399:131-147.
  5. Bye, R. T. and Schaathun, H. G. (2014). An improved receding horizon genetic algorithm for the tug fleet optimisation problem. In Proceedings of the 28th European Conference on Modelling and Simulation, pages 682-690.
  6. Bye, R. T., van Albada, S. B., and Yndestad, H. (2010). A receding horizon genetic algorithm for dynamic multi-target assignment and tracking: A case study on the optimal positioning of tug vessels along the northern Norwegian coast. In Proceedings of the International Conference on Evolutionary Computation (ICEC 2010) - part of the International Joint Conference on Computational Intelligence (IJCCI 2010), pages 114-125.
  7. Det Norske Veritas (2009). Rapport Nr. 2009-1016. Revisjon Nr. 01. Tiltaksanalyse - Fartsgrenser for skip som opererer i norske farvann. Technical report, Sjøfartsdirektoratet.
  8. Eide, M. S., Endresen, Ø., Breivik, Ø., Brude, O. W., Ellingsen, I. H., Røang, K., Hauge, J., and Brett, P. O. (2007a). Prevention of oil spill from shipping by modelling of dynamic risk. Marine Pollution Bulletin, 54:1619-1633.
  9. Eide, M. S., Endresen, Ø., Brett, P. O., Ervik, J. L., and Røang, K. (2007b). Intelligent ship traffic monitoring for oil spill prevention: Risk based decision support building on AIS. Marine Pollution Bulletin, 54:145- 148.
  10. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional.
  11. Goodwin, G. C., Graebe, S. F., and Salgado, M. E. (2001). Control System Design. Prentice Hall, New Jersey.
  12. Hackett, B., Breivik, Ø., and Wettre, C. (2006). Forecasting the Drift of Objects and Substances in the Ocean. In Ocean Weather Forecasting: An Integrated View of Oceanography, pages 507-523. Springer.
  13. Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms. Wiley, 2nd edition.
  14. Havforskningsinstituttet (2010). Fisken og havet, saernummer 1a-2010: Det faglige grunnlaget for oppdateringen av forvaltningsplanen for Barentshavet og havomra°dene utenfor Lofoten. Technical report, Institute of Marine Research (Havforskningsinstituttet).
  15. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, Oxford, England.
  16. Maciejowski, J. M. (2002). Predictive Control with Constraints. Prentice Hall, first edition.
  17. Rossiter, J. A. (2004). CRC Press.
  18. Sørga°rd, E. and Vada, T. (1998). Observations and modelling of drifting ships. Technical report, Det Norske Veritas Research, Høvik Norway.
  19. Vardø VTS (2011). The Vardø Vessel Traffic Service - For increased safety at sea. Information pamphlet accessed at http://kystverket.no/OmKystverket/Brosjyrer-skjema-og-andrepublikasjonar/Brosjyrer2/Brosjyre-om-Vardo-VTS/.
Download


Paper Citation


in Harvard Style

T. Bye R. and Georg Schaathun H. (2015). Evaluation Heuristics for Tug Fleet Optimisation Algorithms - A Computational Simulation Study of a Receding Horizon Genetic Algorithm . In Proceedings of the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-075-8, pages 270-282. DOI: 10.5220/0005217802700282


in Bibtex Style

@conference{icores15,
author={Robin T. Bye and Hans Georg Schaathun},
title={Evaluation Heuristics for Tug Fleet Optimisation Algorithms - A Computational Simulation Study of a Receding Horizon Genetic Algorithm},
booktitle={Proceedings of the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2015},
pages={270-282},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005217802700282},
isbn={978-989-758-075-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Evaluation Heuristics for Tug Fleet Optimisation Algorithms - A Computational Simulation Study of a Receding Horizon Genetic Algorithm
SN - 978-989-758-075-8
AU - T. Bye R.
AU - Georg Schaathun H.
PY - 2015
SP - 270
EP - 282
DO - 10.5220/0005217802700282