Mixed Integer Programming with Decomposition to Solve a Workforce Scheduling and Routing Problem

Wasakorn Laesanklang, Dario Landa-Silva, J. Arturo Castillo Salazar


We propose an approach based on mixed integer programming (MIP) with decomposition to solve a workforce scheduling and routing problem, in which a set of workers should be assigned to tasks that are distributed across different geographical locations. This problem arises from a number of home care planning scenarios in the UK, faced by our industrial partner. We present a mixed integer programming model that incorporates important real-world features of the problem such as defined geographical regions and flexibility in the workers’ availability. Given the size of the real-world instances, we propose to decompose the problem based on geographical areas. We show that the quality of the overall solution is affected by the ordering in which the sub-problems are tackled. Hence, we investigate different ordering strategies to solve the sub-problems and show that such decomposition approach is a very promising technique to produce high-quality solutions in practical computational times using an exact optimization method.


  1. Akjiratikarl, C., Yenradee, P., and Drake, P. R. (2007). PSObased algorithm for home care worker scheduling in the UK. Computers & Industrial Engineering, 53(4):559- 583, doi:10.1016/j.cie.2007.06.002.
  2. Angelis, V. D. (1998). Planning home assistance for AIDS patients in the City of Rome , Italy. Interfaces, 28:75- 83.
  3. Barrera, D., Nubia, V., and Ciro-Alberto, A. (2012). A network-based approach to the multi-activity combined timetabling and crew scheduling problem: Workforce scheduling for public health policy implementation. Computers & Industrial Engineering, 63(4):802-812, doi:10.1016/j.cie.2012.05.002.
  4. Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1):238-252, doi:10.1007/BF01386316.
  5. Bertels, S. and Torsten, F. (2006). A hybrid setup for a hybrid scenario: Combining heuristics for the home health care problem. Computers & Operations Research, 33(10):2866-2890.
  6. Borsani, V., Andrea, M., Giacomo, B., and Francesco, S. (2006). A home care scheduling model for human resources. 2006 International Conference on Service Systems and Service Management, pages 449-454, doi:10.1109/ICSSSM.2006.320504.
  7. Bredstrom, D. and Ronnqvist, M. (2007). A branch and price algorithm for the combined vehicle routing and scheduling problem with synchronization constraints. NHH Dept. of Finance & Management Science Discussion Paper No. 2007/7, (February).
  8. Bredstrom, D. and Ronnqvist, M. (2008). Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. European Journal of Operational Research, 191(1):19 - 31.
  9. Castillo-Salazar, J., Landa-Silva, D., and Qu, R. (2014). Workforce scheduling and routing problems: literature survey and computational study. Annals of Operations Research, doi:10.1007/s10479-014-1687-2.
  10. Castro-Gutierrez, J., Landa-Silva, D., and Moreno, P. J. (2011). Nature of real-world multi-objective vehicle routing with evolutionary algorithms. Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on, pages 257-264, doi:10.1109/ICSMC.2011.6083675.
  11. Cordeau, J.-F., Stojkovic, G., Soumis, F., and Desrosiers, J. (2001). Benders decomposition for simultaneous aircraft routing and crew scheduling. Transportation Science, 35(4):375-388, doi:10.1287/trsc.35.4.375.10432.
  12. Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management Science (pre-1986), 6(1).
  13. Dohn, A., Esben, K., and Jens, C. (2009). The manpower allocation problem with time windows and jobteaming constraints: A branch-and-price approach. Computers & Operations Research, 36(4):1145-1157, doi:10.1016/j.cor.2007.12.011.
  14. Eveborn, P., Ronnqvist, M., Einarsdottir, H., Eklund, M., Liden, K., and Almroth, M. (2009). Operations research improves quality and efficiency in home care. Interfaces, 39(1):18-34, doi:10.1287/inte.1080.0411.
  15. Feillet, D. (2010). A tutorial on column generation and branch-and-price for vehicle routing problems. 4OR, 8(4):407-424.
  16. Hart, E., Sim, K., and Urquhart, N. (2014). A real-world employee scheduling and routing application. In Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, GECCO Comp 7814, pages 1239-1242, New York, NY, USA. ACM.
  17. Kergosien, Y., Lente, C., and Billaut, J.-C. (2009). Home health care problem, an extended multiple travelling salesman problem. In Proceedings of the 4th multidisciplinary international scheduling conference: Theory and applications (MISTA 2009), Dublin, Ireland, pages 85-92.
  18. Landa-Silva, D., Wang, Y., Donovan, P., Kendall, G., and Way, S. (2011). Hybrid heuristic for multi-carrier transportation plans. In The 9th Metaheuristics International Conference (MIC 2011), pages 221-229.
  19. Liu, R., Xie, X., and Garaix, T. (2014). Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics. Omega, 47(0):17 - 32, doi:http://dx.doi.org/10.1016/j.omega.2014.03.003.
  20. Mankowska, D., Meisel, F., and Bierwirth, C. (2014). The home health care routing and scheduling problem with interdependent services. Health Care Management Science, 17(1):15-30, doi:10.1007/s10729-013-9243- 1.
  21. Mercier, A., Cordeau, J.-F., and Soumis, F. (2005). A computational study of Benders decomposition for the integrated aircraft routing and crew scheduling problem. Computers & Operations Research, 32(6):1451 - 1476, doi:http://dx.doi.org/10.1016/j.cor.2003.11.013.
  22. Perl, J. and Daskin, M. S. (1985). A warehouse location-routing problem. Transportation Research Part B: Methodological, 19(5):381 - 396, doi:http://dx.doi.org/10.1016/0191-2615(85)90052-9.
  23. Pillac, V., Gueret, C., and Medaglia, A. (2012). On the dynamic technician routing and scheduling problem. In Proceedings of the 5th International Workshop on Freight Transportation and Logistics (ODYSSEUS 2012), page id: 194, Mikonos, Greece.
  24. Ralphs, T. K. and Galati, M. V. (2010). Decomposition methods for integer programming. Wiley Encyclopedia of Operations Research and Management Science, doi:10.1002/9780470400531.eorms0233.
  25. Rasmussen, M. S., Justesen, T., Dohn, A., and Larsen, J. (2012). The home care crew scheduling problem: Preference-based visit clustering and temporal dependencies. European Journal of Operational Research, 219(3):598-610, doi:http://dx.doi.org/10.1016/j.ejor.2011.10.048.
  26. Reimann, M., Doerner, K., and Hartl, R. F. (2004). D-Ants: Savings based ants divide and conquer the vehicle routing problem. Computers & Operations Research, 31(4):563 - 591, doi:http://dx.doi.org/10.1016/S0305- 0548(03)00014-5.
  27. Trautsamwieser, A. and Hirsch, P. (2011). Optimization of daily scheduling for home health care services. Journal of Applied Operational Research, 3:124-136.
  28. Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm. Operations Research, 48(1):111.
  29. Vanderbeck, F. and Wolsey, L. (2010). Reformulation and decomposition of integer programs. In Junger, M. et al., editors, 50 Years of Integer Programming 1958-2008, pages 431-502. Springer Berlin Heidelberg.

Paper Citation

in Harvard Style

Laesanklang W., Landa-Silva D. and Arturo Castillo Salazar J. (2015). Mixed Integer Programming with Decomposition to Solve a Workforce Scheduling and Routing Problem . In Proceedings of the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-758-075-8, pages 283-293. DOI: 10.5220/0005223602830293

in Bibtex Style

author={Wasakorn Laesanklang and Dario Landa-Silva and J. Arturo Castillo Salazar},
title={Mixed Integer Programming with Decomposition to Solve a Workforce Scheduling and Routing Problem},
booktitle={Proceedings of the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},

in EndNote Style

JO - Proceedings of the International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Mixed Integer Programming with Decomposition to Solve a Workforce Scheduling and Routing Problem
SN - 978-989-758-075-8
AU - Laesanklang W.
AU - Landa-Silva D.
AU - Arturo Castillo Salazar J.
PY - 2015
SP - 283
EP - 293
DO - 10.5220/0005223602830293