Fast Item-Based Collaborative Filtering

David Ben Shimon, Lior Rokach, Bracha Shapira, Guy Shani

Abstract

Item-based Collaborative Filtering (CF) models offer good recommendations with low latency. Still, constructing such models is often slow, requiring the comparison of all item pairs, and then caching for each item the list of most similar items. In this paper we suggest methods for reducing the number of item pairs comparisons, through simple clustering, where similar items tend to be in the same cluster. We propose two methods, one that uses Locality Sensitive Hashing (LSH), and another that uses the item consumption cardinality. We evaluate the two methods demonstrating the cardinality based method reduce the computation time dramatically without damage the accuracy.

References

  1. J. S. Breese. D. Heckerman, C. Kadie (1998). Empirical analysis of predictive algorithms for collaborative filtering. UAI-98, 43-52.
  2. D. Bridge, J. Kelleher (2002). Experiments in sparsity reduction: Using clustering in collaborative recommenders. In Artificial Intelligence and Cognitive Science (pp. 144-149). Springer Berlin Heidelberg.
  3. S. H. S Chee.(2000) RecTree: A Linear Collaborative Filtering Algorithm. M.Sc Thesis. Simon Fraser University.
  4. P. Cremonesi , Y. Koren, R. Turrin (2010). Performance of recommender algorithms on top-n recommendation tasks. In Proc. 4th ACM Conference on Recommender Systems, 39-46.
  5. A. S. Das, M. Datar, A. Garg, S. Rajaram (2007). Google news personalization: scalable online collaborative filtering. In Proceedings of the 16th international conference on World Wide Web (pp. 271-280). ACM.
  6. P. Gionis, P. Indyk, R. Motwani (1999). Similarity search in high dimensions via hashing. Proceedings of VLDB, pp. 518-529.
  7. J. L. Herlocker, J. A. Konstan, L. G Terveen, J. T. Riedl (2004). Evaluating Collaborative Filtering Recommender Systems. ACM Trans. Information Systems, vol. 22, no. 1, pp. 5-53, 2004.
  8. P. Jaccard (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.
  9. G. Karypis, V. Kumar (1998). A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. University of Minnesota, Department of Computer Science and Engineering, Army HPC Research Center, Minneapolis, MN.
  10. C. Lin, G. R., Xue, H. J. Zeng, B. Zhang, and Wang, J. (2014). U.S. Patent No. 8,738,467. Washington, DC: U.S. Patent and Trademark Office.
  11. G. Linden, B. Smith, J. York (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7, 76-80.
  12. B. Sarwar, G. Karypis, J. Konstan, J. Riedl. (2001). Itembased collaborative filtering recommendation algorithms. WWW10.
  13. B. M. Sarwar, G. Karypis, J. Konstan, J. Riedl.(2002) Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering. In Proceedings of the fifth international conference on computer and information technology (Vol. 1).
  14. M. O'Connor, J. Herlocker (1999). Clustering items for collaborative filtering. In Proceedings of the ACM SIGIR workshop on recommender systems (Vol. 128).
  15. Shani, A. Gunawardana (2011). Evaluating Recommendation Systems. Recommender Systems Handbook: 257-297.
Download


Paper Citation


in Harvard Style

Ben Shimon D., Rokach L., Shapira B. and Shani G. (2015). Fast Item-Based Collaborative Filtering . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-074-1, pages 457-463. DOI: 10.5220/0005227104570463


in Bibtex Style

@conference{icaart15,
author={David Ben Shimon and Lior Rokach and Bracha Shapira and Guy Shani},
title={Fast Item-Based Collaborative Filtering},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2015},
pages={457-463},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005227104570463},
isbn={978-989-758-074-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Fast Item-Based Collaborative Filtering
SN - 978-989-758-074-1
AU - Ben Shimon D.
AU - Rokach L.
AU - Shapira B.
AU - Shani G.
PY - 2015
SP - 457
EP - 463
DO - 10.5220/0005227104570463