Mathematical Model of a Human Leg - The Switched Linear System Approach

Artur Babiarz, Adam Czornik, Michal Niezabitowski, Radoslaw Zawiski

Abstract

This article presents a novel approach to modelling of the human leg with the use of linear switched systems. Second order differential equations forming a two-segments leg model moving in a vertical plane are shown. State space linear equations describing given model are derived. A linear switched system for such model is presented, where the switching function is modelled as state-dependent. Based on this approach a linear system is presented, which is composed of four subsystems between which switching occurs depending on two state variables. These variables represent angular displacements. As a consequence, a state space division is shown together with a linear system describing human leg in this setting. Finally, a set of simulations presents differences between standard linear modelling approach and a switched linear system approach.

References

  1. Burdet, E., Tee, K. P., Mareels, I., Milner, T. E., Chew, C.- M., Franklin, D. W., Osu, R., and Kawato, M. (2006). Stability and motor adaptation in human arm movements. Biological cybernetics, 94(1):20-32.
  2. Chang, P. H., Park, K., Kang, S. H., Krebs, H. I., and Hogan, N. (2013). Stochastic estimation of human arm impedance using robots with nonlinear frictions: An experimental validation. Mechatronics, IEEE/ASME Transactions on, 18(2):775-786.
  3. Chen, K. (2011). Modeling of equilibrium point trajectory control in human arm movements. PhD thesis, New Jersey Institute of Technology.
  4. Csercsik, D. (2005). Analysis and control of a simple nonlinear limb model. PhD thesis, University of Technology.
  5. Czornik, A. and Niezabitowski, M. (2013). Controllability and stability of switched systems. In Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on, pages 16-21.
  6. Czornik, A. and S wierniak, A. (2004). On direct controllability of discrete time jump linear system. Journal of the Franklin Institute, 341(6):491-503.
  7. Czornik, A. and Swierniak, A. (2005). Controllability of discrete time jump linear systems. Dynamics of Continuous Discrete and Impulsive Systems-Series BApplications & Algorithms, 12(2):165 - 189.
  8. HosseinNia, S. H., Tejado, I., and Vinagre, B. M. (2013). Stability of fractional order switching systems. Computers & Mathematics with Applications, 66(5):585- 596.
  9. Kaczorek, T. (2013). Stability of positive fractional switched continuous-time linear systems. Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 61(2):349-352.
  10. Klamka, J., Czornik, A., and Niezabitowski, M. (2013). Stability and controllability of switched systems. Bulletin of the Polish Academy of Sciences. Technical Sciences, 61:547-555.
  11. Klamka, J., Czornik, A., Niezabitowski, M., and Babiarz, A. (2014). Controllability and minimum energy control of linear fractional discrete-time infinitedimensional systems. In 11th IEEE International Conference on Control and Automation, pages 1210- 1214. IEEE.
  12. Klamka, J. and Niezabitowski, M. (2013). Controllability of switched linear dynamical systems. In Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on, pages 464-467.
  13. Klamka, J. and Niezabitowski, M. (2014). Controllability of switched infinite-dimensional linear dynamical systems. In Methods and Models in Automation and Robotics (MMAR), 2014 19th International Conference on, pages 171-175.
  14. Kong, K. and Tomizuka, M. (2009). Control of exoskeletons inspired by fictitious gain in human model. Mechatronics, IEEE/ASME Transactions on, 14(6):689-698.
  15. Lee, D., Glueck, M., et al. (2010). A survey of modeling and simulation of skeletal muscle. ACM Transactions on Graphics, 28(4):162.
  16. Liberzon, D. (2003). Switching in systems and control. Springer.
  17. Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., and Theobalt, C. (2013). Capture and statistical modeling of arm-muscle deformations. In Computer Graphics Forum, volume 32, pages 285-294. Wiley Online Library.
  18. Pavlovic, V., Rehg, J. M., and MacCormick, J. (2001). Learning switching linear models of human motion. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages 981-987. MIT Press.
  19. Pons, J., Moreno, J., Brunetti, F., and Rocon, E. (2007). Lower-Limb Wearable Exoskeleton In Rehabilitation Robotics. Monografie - Komitet Automatyki i Robotyki P. I-Tech Education and Publishing.
  20. Sekine, M., Sugimori, K., Gonzalez, J., and Yu, W. (2013). Optimization-Based Design of a Small PneumaticActuator-Driven Parallel Mechanism for a Shoulder Prosthetic Arm with Statics and Spatial Accessibility. Evaluation. International Journal of Advanced Robotic Systems, 286(10).
  21. Shorten, R. (2007). On Quadratic Stability of Statedependent Planar Switching Systems. Forschungsberichte der Fakultät IV - Elektrotechnik und Informatik // Technische Universität Berlin. Techn. Univ., Fak. IV, Elektrotechnik und Informatik.
  22. Sun, Z. (2006). Switched linear systems: Control and Design. Springer.
  23. Sun, Z. and Ge, S. S. (2011). Stability theory of switched dynamical systems. Springer.
  24. Tejado, I., Valério, D., Pires, P., and J., M. (2013a). Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement. Mechatronics, 23(7):805- 812.
  25. Tejado, I., Valrio, D., Pires, P., and Martins, J. (2013b). Fractional order human arm dynamics with variability analyses. Mechatronics, 23(7):805-812.
  26. Ueyama, Y. and Miyashita, E. (2014). Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement. Industrial Electronics, IEEE Transactions on, 61(2):1044-1052.
  27. Zawiski, R. and Blachuta, M. (2012). Model development and optimal control of quadrotor aerial robot. In Methods and Models in Automation and Robotics (MMAR), 2012 17th International Conference on, pages 475- 480.
  28. Zhao, Y., Xu, C., Luo, Y., and Wang, Y. (2008). Design, modeling and simulation of the human lower extremity exoskeleton. In Control and Decision Conference, 2008. CCDC 2008. Chinese, pages 3335-3339. IEEE.
Download


Paper Citation


in Harvard Style

Babiarz A., Czornik A., Niezabitowski M. and Zawiski R. (2015). Mathematical Model of a Human Leg - The Switched Linear System Approach . In Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS, ISBN 978-989-758-084-0, pages 90-97. DOI: 10.5220/0005230300900097


in Bibtex Style

@conference{peccs15,
author={Artur Babiarz and Adam Czornik and Michal Niezabitowski and Radoslaw Zawiski},
title={Mathematical Model of a Human Leg - The Switched Linear System Approach},
booktitle={Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,},
year={2015},
pages={90-97},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005230300900097},
isbn={978-989-758-084-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,
TI - Mathematical Model of a Human Leg - The Switched Linear System Approach
SN - 978-989-758-084-0
AU - Babiarz A.
AU - Czornik A.
AU - Niezabitowski M.
AU - Zawiski R.
PY - 2015
SP - 90
EP - 97
DO - 10.5220/0005230300900097