The Gradient Product Transform for Symmetry Detection and Blood Vessel Extraction

Christoph Dalitz, Regina Pohle-Fröhlich, Fabian Schmitt, Manuel Jeltsch

Abstract

The "gradient product transform" is a recently proposed image filter for assigning each image point a symmetry score based on scalar products of gradients. In this article, we show that the originally suggested method for finding the radius of the symmetry region is unreliable, and a more robust method is presented. Moreover, we extend the symmetry transform to rectangular symmetry regions so that it is more robust with respect to skew, and the transform is generalised to also work with three dimensional image data. We apply the transform to two different problems: detection of objects with rotational symmetry, and blood vessel extraction from medical images. In an experimental comparison with other solutions for these problems, the gradient product transform performs comparable to the best known algorithm for rotational symmetry detection, and better than the vesselness filter for blood vessel extraction.

References

  1. Dalitz, C., Pohle-Fröhlich, R., and Bolten, T. (2013). Detection of symmetry points in images. In International Conference on Computer Vision Theory and Applications (VISAPP), pages 577-585.
  2. Drechsler, K. and Laura, C. (2010). Comparison of vesselness functions for multiscale analysis of the liver vasculature. In Information Technology and Applications in Biomedicine (ITAB), 2010 10th IEEE International Conference on, pages 1-5.
  3. Erdt, M., Raspe, M., and Sühling, M. (2008). Automatic hepatic vessel segmentation using graphics hardware. In Medical Imaging and Augmented Reality, 4th International Workshop, MIAR 2008, pages 403-412.
  4. Frangi, A., Niessen, W., Vincken, K., and Viergever, M. (1998). Multiscale vessel enhancement filtering. In Medical Image Computing and Computer-Assisted Interventation MICCAI98, pages 130-137.
  5. Haralick, R. M. and Shapiro, L. G. (1992). Computer and Robot Vision, volume 1. Addison-Wesley, Reading, MA.
  6. Liu, J., Slota, G., Zheng, G., Wu, Z., Park, M., Lee, S., Rauschert, I., and Liu, Y. (2013). Symmetry detection from real world images competition 2013: Summary and results. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  7. Liu, Y., Hel-Or, H., Kaplan, C., and Gool, L. V. (2010). Computational symmetry in computer vision and computer graphics. Foundations and Trends in Computer Graphics and Vision, 5:1-195.
  8. Loy, G. and Eklundh, J. (2006). Detecting symmetry and symmetric constellations of features. In European Conference on Computer Vision (ECCV), pages 508- 521.
  9. Park, M., Lee, S., Chen, P., Kashyap, S., Butt, A., and Liu, Y. (2008). Performance evaluation of state-of-the-art discrete symmetry detection algorithms. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1-8.
  10. Pohle-Fröhlich, R. and Stalder, D. (2014). 3DSymmetrietransformation zur Gefäßsegmentierung in MRT-TOF-Daten. In Bildverarbeitung fr die Medizin 2014, pages 144-149.
  11. Rauschert, I., Brockelhurst, K., Liu, J., Kashyap, S., and Liu, Y. (2011). Workshop on symmetry detection from real world images - a summary. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  12. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., and Kikinis, R. (1998). Threedimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2:143168.
  13. Shahbeig, S. (2013). Automatic and quick blood vessels extraction algorithm in retinal images. Image Processing, IET, 7:392-400.
  14. Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., and van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. Medical Imaging, IEEE Transactions on, 23:501-509.
Download


Paper Citation


in Harvard Style

Dalitz C., Pohle-Fröhlich R., Schmitt F. and Jeltsch M. (2015). The Gradient Product Transform for Symmetry Detection and Blood Vessel Extraction . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 177-184. DOI: 10.5220/0005234101770184


in Bibtex Style

@conference{visapp15,
author={Christoph Dalitz and Regina Pohle-Fröhlich and Fabian Schmitt and Manuel Jeltsch},
title={The Gradient Product Transform for Symmetry Detection and Blood Vessel Extraction},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={177-184},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005234101770184},
isbn={978-989-758-090-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - The Gradient Product Transform for Symmetry Detection and Blood Vessel Extraction
SN - 978-989-758-090-1
AU - Dalitz C.
AU - Pohle-Fröhlich R.
AU - Schmitt F.
AU - Jeltsch M.
PY - 2015
SP - 177
EP - 184
DO - 10.5220/0005234101770184