Wound Area Assessment using Mobile Application

Ivan Miguel Pires, Nuno M. Garcia

Abstract

This research aims to discover methods for the detection of the area of a wound using mobile devices. These devices have low memory and low processing capacity and they need the use of low complexity operations to identify a wound. The calculation of the wounded area consists of three phases, there are: image acquisition, image processing, surface reconstruction and calculations. This research is related to the use a mobile device to identify wound contours and area in a captured image. This image can be captured with a camera in a smartphone and the wound area is calculated based on the distance of the surface area and the resolution of the image captured. The main study in this research is the image processing in a mobile device, due to the limitations of these devices. However, the application developed during this research was developed for desktop, using the OpenCV library that is compatible with the Android platform and Java desktop technologies. During this research, the developed code written in Java will be easily adapted to the Android platform. The desktop application developed is available in a free repository for testing.

References

  1. Acha, B., Serrano, C., Acha, J. I. & Roa, L. M. 2005. Segmentation And Classification Of Burn Images By Color And Texture Information. J Biomed Opt, 10, 034014.
  2. Aslantas, V. & Tunckanat, M. 2007. Differential Evolution Algorithm For Segmentation Of Wound Images. 1-5.
  3. Bosomworth, D. 2013. Mobile Marketing Statistics 2013 [Online]. Available: Http://Www.Smartinsights.Com/MobileMarketing/Mobile-Marketing-Analytics/MobileMarketing-Statistics/ [Accessed January 12th 2014].
  4. Bradski, G. & Kaehler, A. 2008. Learning Opencv, United States Of America, O'reilly.
  5. Casas, L., Castaneda, B. & Treuillet, S. 2011. Imaging Technologies Applied To Chronic Wounds: A Survey. 4th International Symposium On Applied Sciences In Biomedical And Communication Technologies. Barcelona, Spain.
  6. Cuautle, N. F. 2007. System For Face Detection On A Mobile Phone Using Java Technology. Master Thesis, University Of Oslo.
  7. D, L. 2006. Design And Implementation For Wound Measurement Application. Primary Intention 2006, 14, 56-58, 60-63, 66.
  8. Filho, O. M. & Neto, H. V. 1999. Processamento Digital De Imagens, Rio De Janeiro, Brasport.
  9. Foltynski, P., Ladyzynski, P. & Wojcicki, J. M. 2013. A New Smartphone-Based Method For Wound Area Measurement. Artif Organs.
  10. Friesen, M. R., Hamel, C. & Mcleod, R. D. 2013. A Mhealth Application For Chronic Wound Care: Findings Of A User Trial. Int J Environ Res Public Health, 10, 6199-214.
  11. Gallagher, B. A. 2012. Wound Bed Assessment Using Calibrated Images And Representation In Openehr. Master Of Science In Health Informatics, University Of Dublin.
  12. Gammal, S. & Popp, R. 1995. A Color Image Analysis System (Cd-Cwa) To Quantify Wound Healing Of Ulcers. Skin Resear Techn, 1.
  13. Giger, M. L., Wannous, H., Lucas, Y., Treuillet, S. & Karssemeijer, N. 2008. Efficient Svm Classifier Based On Color And Texture Region Features For Wound Tissue Images. 6915, 69152t-69152t-10.
  14. Gonzalez, R. C. & Woods, R. E. 1992. Processamento De Imagens Digitais, Brasil, Editora Edgar Bucher Ldta.
  15. H, P., M, M., J, T., P, P., S, S. & Ji, S. 2009. Assessment Of Wound Healing: Validity, Reliability And Sensitivity Of Available Instruments. Wound Practice And Research, 17, 208-217.
  16. Healthpath. 2011. Mowa - Mobile Wound Analyzer For Iphone And Ipad - Healthpath [Online]. Available: Http://Www.Healthpath.It/Imowa.Html [Accessed January 12th 2014].
  17. Heggestuen, J. 2013. One In Every 5 People In The World Own A Smartphone, One In Every 17 Own A Tablet [Chart] [Online]. Available: Http://Www.Businessinsider.Com/Smartphone-AndTablet-Penetration-2013-10 [Accessed January 12th 2014].
  18. Hettiarachchi, N. D. J., Mahindaratne, R. B. H., Mendis, G. D. C., Nanayakkara, H. T. & Nanayakkara, N. D. 2013. Mobile Based Wound Measurement. 2013 Ieee Point-Of-Care Healthcare Technologies (Pht), 298- 301.
  19. Kim, H. M., Lowery, J. C., Hamill, J. B. & Wilkins, E. G. 2003. Accuracy Of A Web-Based System For Monitoring Chronic Wounds. Telemed J E Health, 9, 129-40.
  20. Kolesnik, M. & Fexa, A. 2004. Segmentation Of Wounds In The Combined Color-Texture Feature Space. Medical Imaging 2004: Image Processing, Pts 1-3, 5370, 549-556.
  21. Kolesnik, M. & Fexa, A. 2005. Multi-Dimensional Color Histograms For Segmentation Of Wounds In Images. Image Analysis And Recognition, 3656, 1014-1022.
  22. Kolesnik, M. & Fexa, A. How Robust Is The Svm Wound Segmentation? In: Ieee, Ed. Signal Processing Symposium, 2006 Rejkjavik. Ieee, 50-53.
  23. Krouskop, T. A., Baker, R. & Wilson, M. S. 2002. A Noncontact Wound Measurement System. J Rehabil Res Dev, 39, 337-45.
  24. Kumar, K. S., Asokan, L., M.P, P. & Reddy, B. E. 2013. Assessment Of The Wound-Healing Process By Accurate Single View Issue Classification And Depth Estimation For Telemedicine. International Journal Of Engineering And Advanced Technology (Ijeat), 2, 467-475.
  25. Lazarus, G. S., Cooper, D. M., Knighton, D. R., Margolis, D. J., Pecoraro, R. E., Rodeheaver, G. & Robson, M. C. 1994. Definitions And Guidelines For Assessment Of Wounds And Evaluation Of Healing. Archives Of Dermatology, 130, 489-493.
  26. Li, P. N., Li, H., Wu, M. L., Wang, S. Y., Kong, Q. Y., Zhang, Z., Sun, Y., Liu, J. & Lv, D. C. 2012. A CostEffective Transparency-Based Digital Imaging For Efficient And Accurate Wound Area Measurement. Plos One, 7, E38069.
  27. Loizou, C. P., Kasparis, T. & Polyviou, M. 2013. Evaluation Of Wound Healing Process Based On Texture Image Analysis. Journal Of Biomedical Graphics And Computing, 3.
  28. Marengoni, M. C. & Stringhini, D. 2009. Tutorial: IntroduçÃo À Visão Computacional Usando Opencv. Rita, Xvi.
  29. Mayrovitz, H. N. & Soontupe, L. B. 2009. Wound Areas By Computerized Planimetry Of Digital Images: Accuracy And Reliability. Adv Skin Wound Care, 22, 222-9.
  30. Mekkes, J. R. & Westerhof, W. 1995. Image Processing In The Study Of Wound Healing. Clinics In Dermatology, 13, 401-407.
  31. Navas, M., Luque-Baena, R. M., Morente, L., Coronado, D., Rodriguez, R. & Veredas, F. J. 2013. ComputerAided Diagnosis In Wound Images With Neural Networks. Advances In Computational Intelligence, Pt Ii, 7903, 439-448.
  32. Nayak, R., Kumar, P. & Galigekere, R. R. 2009. Towards A Comprehensive Assessment Of WoundComposition Using Color-Image Processing. 2009 16th Ieee International Conference On Image Processing, Vols 1-6, 4133-4136.
  33. Nemeth, M., Sprigle, S. & Gajjala, A. 2010. Clinical Usability Of A Wound Measurement Device. 36th Annual American Spinal Injury Conference. Nashville.
  34. Ousey, K. & Cook, L. 2011. Understanding The Importance Of Holistic Wound Assessment. Practice Nursing, 22, 308-314.
  35. Papazoglou, E. S., Zubkov, L., Mao, X., Neidrauer, M., Rannou, N. & Weingarten, M. S. 2010. Image Analysis Of Chronic Wounds For Determining The Surface Area. Wound Repair Regen, 18, 349-58.
  36. Perera, C. & Chakrabarti, R. 2013. The Utility Of Mhealth In Medical Imaging. Journal Of Mobile Technology In Medicine, 2, 4-6.
  37. Plassmann, P. & Jones, T. D. 1998. Mavis: A NonInvasive Instrument To Measure Area And Volume Of Wounds. Measurement Of Area And Volume Instrument System. Med Eng Phys, 20, 332-8.
  38. Prodan, A., Campean, R., Revnic, C. & Prodan, R. 2009. Strategies For Wound Image Understanding. 2009 Ieee/Acs International Conference On Computer Systems And Applications, Vols 1 And 2, 1018-1024.
  39. Prodan, A., Campean, R., Rusu, M., Revnic, C., Mitrea, P. & Prodan, R. 2010a. Toward A Model For Wound Healing Simulation. 115-120.
  40. Prodan, A., Rusu, M., Campean, R. & Prodan, R. 2006. A Java Framework For Analysing And Processing Wound Images For Medical Education. 20th European Conference On Modelling And Simulation Ecms 2006, 421-426.
  41. Prodan, A., Rusu, M., Revnic, C., Campean, R., Mitrea, P. & Prodan, R. 2010b. Intelligent E-Tools For Wound Image Understanding And Evaluation. 8-13.
  42. Russell, L. 1999. The Importance Of Wound Documentation And Classification. Br J Nurs, 8, 1342-3, 1346, 1348 Passim.
  43. Sikka, N., Carlin, K. N., Pines, J., Pirri, M., Strauss, R. & Rahimi, F. 2012. The Use Of Mobile Phones For Acute Wound Care: Attitudes And Opinions Of Emergency Department Patients. J Health Commun, 17 Suppl 1, 37-42; Quiz 42-3.
  44. Song, B. 2012. An Automated Wound Identification System Based On Image Segmentation And Artificial Neural Networks. Master Of Science In Biomedical Engineering, Faculty Of Drexel University.
  45. Song, B. & Sacan, A. 2012. Automated Wound Identification System Based On Image Segmentation And Artificial Neural Networks. 1-4.
  46. Technologies, W. 2013. Woundright - Mobile Wound Care Software [Online]. Woundright Technologies. Available: Http://Www.Woundrightapp.Com/Woundright.Html [Accessed January 12th 2014].
  47. Van Poucke, S., Nelissen, R., Jorens, P. & Vander Haeghen, Y. 2010. Comparative Analysis Of Two Methods For Wound Bed Area Measurement. Int Wound J, 7, 366-77.
  48. Vivanco, J., Neighbour, R., Hamel, C., Mukhi, S., Friesen, M. R. & Mcleod, R. D. 2011. A Smartphone Application For Remote Wound Treatment And Documentation Compliance. In: Ieee (Ed.) Resna. Toronto, Canada: Ieee.
  49. Wannous, H., Lucas, Y. & Treuillet, S. 2011. Enhanced Assessment Of The Wound-Healing Process By Accurate Multiview Tissue Classification. Ieee Trans Med Imaging, 30, 315-26.
  50. Wannous, H., Lucas, Y., Treuillet, S. & Albouy, B. 2008. Mapping Classification Results On 3d Model: A Solution For Measuring The Real Areas Covered By Skin Wound Tissues. 2008 3rd International Conference On Information And Communication Technologies: From Theory To Applications, Vols 1-5, 930-935.
  51. Wannous, H., Treuillet, S. & Lucas, Y. 2007. Supervised Tissue Classification From Color Images For A Complete Wound Assessment Tool. Conf Proc Ieee Eng Med Biol Soc, 2007, 6032-5.
  52. Wannous, H., Treuillet, S. & Lucas, Y. 2010. Robust Tissue Classification For Reproducible Wound Assessment In Telemedicine Environments. Journal Of Electronic Imaging, 19.
  53. Wild, T., Prinz, M., Fortner, N., Krois, W., Sahora, K., Stremitzer, S. & Hoelzenbein, T. 2008. Digital Measurement And Analysis Of Wounds Based On Colour Segmentation. European Surgery, 40, 5-10.
  54. Zaffari, C. A. 2006. Visualização E Processamento Digital De Imagens Médicas. Master Of Science, Universidade Católica Do Rio Grande Do Sul.
Download


Paper Citation


in Harvard Style

Miguel Pires I. and M. Garcia N. (2015). Wound Area Assessment using Mobile Application . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: SmartMedDev, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 271-282. DOI: 10.5220/0005236502710282


in Bibtex Style

@conference{smartmeddev15,
author={Ivan Miguel Pires and Nuno M. Garcia},
title={Wound Area Assessment using Mobile Application},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: SmartMedDev, (BIOSTEC 2015)},
year={2015},
pages={271-282},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005236502710282},
isbn={978-989-758-071-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: SmartMedDev, (BIOSTEC 2015)
TI - Wound Area Assessment using Mobile Application
SN - 978-989-758-071-0
AU - Miguel Pires I.
AU - M. Garcia N.
PY - 2015
SP - 271
EP - 282
DO - 10.5220/0005236502710282